Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(2): 288-299, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036629

RESUMO

The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating ß-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Carboidratos da Dieta/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Butiratos/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Pólipos do Colo/metabolismo , Pólipos do Colo/microbiologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Reparo de Erro de Pareamento de DNA , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/metabolismo , Organismos Livres de Patógenos Específicos , beta Catenina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(14): e2316303121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551838

RESUMO

Photodynamic therapy (PDT) relies on a series of photophysical and photochemical reactions leading to cell death. While effective for various cancers, PDT has been less successful in treating pigmented melanoma due to high light absorption by melanin. Here, this limitation is addressed by 2-photon excitation of the photosensitizer (2p-PDT) using ~100 fs pulses of near-infrared laser light. A critical role of melanin in enabling rather than hindering 2p-PDT is elucidated using pigmented and non-pigmented murine melanoma clonal cell lines in vitro. The photocytotoxicities were compared between a clinical photosensitizer (Visudyne) and a porphyrin dimer (Oxdime) with ~600-fold higher σ2p value. Unexpectedly, while the 1p-PDT responses are similar in both cell lines, 2p activation is much more effective in killing pigmented than non-pigmented cells, suggesting a dominant role of melanin 2p-PDT. The potential for clinical translational is demonstrated in a conjunctival melanoma model in vivo, where complete eradication of small tumors was achieved. This work elucidates the melanin contribution in multi-photon PDT enabling significant advancement of light-based treatments that have previously been considered unsuitable in pigmented tumors.


Assuntos
Melanoma , Fotoquimioterapia , Neoplasias Cutâneas , Camundongos , Humanos , Animais , Fármacos Fotossensibilizantes/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melaninas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
3.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053334

RESUMO

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.


Assuntos
Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Osteogênese Imperfeita/genética , Proteínas de Transporte Vesicular/metabolismo , Adulto , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Osso e Ossos/patologia , Galinhas , Pré-Escolar , Colágeno Tipo I/química , Colágeno Tipo I/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Lactente , Masculino , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Linhagem , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
4.
Mol Pharm ; 20(9): 4546-4558, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37578286

RESUMO

Delamanid (DLM) is a hydrophobic small molecule therapeutic used to treat drug-resistant tuberculosis (DR-TB). Due to its hydrophobicity and resulting poor aqueous solubility, formulation strategies such as amorphous solid dispersions (ASDs) have been investigated to enhance its aqueous dissolution kinetics and thereby improve oral bioavailability. However, ASD formulations are susceptible to temperature- and humidity-induced phase separation and recrystallization under harsh storage conditions typically encountered in areas with high tuberculosis incidence. Nanoencapsulation represents an alternative formulation strategy to increase aqueous dissolution kinetics while remaining stable at elevated temperature and humidity. The stabilizer layer coating the nanoparticle drug core limits the formation of large drug domains by diffusion during storage, representing an advantage over ASDs. Initial attempts to form DLM-loaded nanoparticles via precipitation-driven self-assembly were unsuccessful, as the trifluoromethyl and nitro functional groups present on DLM were thought to interfere with surface stabilizer attachment. Therefore, in this work, we investigated the nanoencapsulation of DLM via emulsification, avoiding the formation of a solid drug core and instead keeping DLM dissolved in a dichloromethane dispersed phase during nanoparticle formation. Initial emulsion formulation screening by probe-tip ultrasonication revealed that a 1:1 mass ratio of lecithin and HPMC stabilizers formed 250 nm size-stable emulsion droplets with 40% DLM loading. Scale-up studies were performed to produce nearly identical droplet size distribution at larger scale using high-pressure homogenization, a continuous and industrially scalable technique. The resulting emulsions were spray-dried to form a dried powder, and in vitro dissolution studies showed dramatically enhanced dissolution kinetics compared to both as-received crystalline DLM and micronized crystalline DLM, owing to the increased specific surface area and partially amorphous character of the DLM-loaded nanoparticles. Solid-state NMR and dissolution studies showed good physical stability of the emulsion powders during accelerated stability testing (50 °C/75% RH, open vial).


Assuntos
Nanopartículas , Tuberculose Bucal , Humanos , Emulsões , Nanopartículas/química , Solubilidade , Excipientes/química , Água/química , Tamanho da Partícula
5.
Photochem Photobiol Sci ; 22(11): 2563-2572, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632684

RESUMO

BACKGROUND: This study assessed the therapeutic efficacy of intraperitoneal photodynamic therapy (PDT) using photosensitizer activation at two different wavelengths, 405 and 664 nm, in a mouse model of peritoneal carcinomatosis. METHODS: The dark and light cytotoxicity of chlorin e6-polyvinylpyrrolidone (Phonozen) were measured in vitro under 402 ± 14 and 670 ± 18 nm LED activation in bioluminescent human gastric cancer cells, MKN45-luc. Cell viability was measured at 6 h after irradiation using the PrestoBlue assay. Corresponding in vivo studies were performed in athymic nude mice by intraperitoneal injection of 1 × 106 MKN45-luc cells. PDT was performed 10 d after tumor induction and comprised intraperitoneal injection of Phonozen followed by light irradiation at 3 h, delivered by a diffusing-tip optical fiber placed in the peritoneal cavity and coupled to a 405 or 664 nm diode laser to deliver a total energy of 50 J (20 mice per cohort). Whole-body bioluminescence imaging was used to track the tumor burden after PDT out to 130 days, and 5 mice in each cohort were sacrificed at 4 h post treatment to measure the acute tumor necrosis. RESULTS: Photosensitizer dose-dependent photocytotoxicity was higher in vitro at 405 than 664 nm. In vivo, PDT reduced the tumor growth rate at both wavelengths, with no statistically significant difference. There was substantial necrosis, and median survival was significantly prolonged at both wavelengths compared with controls (46 and 46 vs. 34 days). CONCLUSIONS: Phonozen-mediated PDT results in significant cytotoxicity in vitro as well as tumor necrosis and prolonged survival in vivo following intraperitoneal light irradiation. Blue light was more photocytotoxic than red in vitro and had marginally higher efficacy in vivo.


Assuntos
Neoplasias Peritoneais , Fotoquimioterapia , Humanos , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Neoplasias Peritoneais/tratamento farmacológico , Camundongos Nus , Modelos Animais de Doenças , Necrose , Linhagem Celular Tumoral
6.
Environ Manage ; 72(2): 294-308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36881178

RESUMO

Soil carbon sequestration programmes are a way of offsetting GHG emissions, however, it requires agricultural landholders to be engaged in such initiatives for carbon offsets to occur. Farmer engagement is low in market-based programmes for soil carbon credits in Australia. We interviewed long-term practitioners (n = 25) of rotational grazing in high-rainfall lands of New South Wales, Australia to understand their current social-ecological system (SES) of soil carbon management (SCM). The aim was to identify those components of the SES that motivate them to manage soil carbon and also influence their potential engagement in soil carbon sequestration programmes. Utilising first-tier and second-tier concepts from Ostrom's SES framework, the interview data were coded and identified a total of 51 features that characterised the farmers' SES of SCM. Network analysis of farmer interview data revealed that the current SES of SCM has low connectivity among the SES features (30%). In four workshops with interviewed farmers (n = 2) and invited service providers (n = 2) the 51 features were reviewed and participants decided on the positioning and the interactions between features that were considered to influence SCM into a causal loop diagram. Post-workshop, 10 feedback loops were identified that revealed the different and common perspectives of farmers and service providers on SCM in a consolidated causal loop diagram. Defining the SES relationships for SCM can identify the challenges and needs of stakeholders, particularly farmers, which can then be addressed to achieve local, national and international objectives, such as SCM co-benefits, GHG reduction, carbon sequestration targets and SDGs.


Assuntos
Fazendeiros , Solo , Humanos , Carbono/análise , Austrália , Agricultura , Ecossistema
7.
Int Rev Sociol Sport ; 58(6): 911-931, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37601306

RESUMO

What happens to our sporting goods when we are done with them? Even though Sustainable Development Goal 12 focuses on responsible consumption and production, very few in the sports industry (and academy) have asked this question. With environmental degradation now a daily concern around the world, we can no longer produce and consume sporting goods without considering the end-of-use stage for these products. This study focuses on the bike and its role in global waste accumulation through various forms of planned obsolescence. Through interviews with experts in and around the bike industry and waste management, we provide insight into the environmental barriers that are structural and specific to the bike industry. We then advocate for extended producer responsibility and the circular economy as an imperfect but radical alternative future.

8.
Gastroenterology ; 160(6): 1947-1960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617889

RESUMO

The cancer stem cell (CSC) concept emerged from the recognition of inherent tumor heterogeneity and suggests that within a given tumor, in analogy to normal tissues, there exists a cellular hierarchy composed of a minority of more primitive cells with enhanced longevity (ie, CSCs) that give rise to shorter-lived, more differentiated cells (ie, cancer bulk populations), which on their own are not capable of tumor perpetuation. CSCs can be responsible for cancer therapeutic resistance to conventional, targeted, and immunotherapeutic treatment modalities, and for cancer progression through CSC-intrinsic molecular mechanisms. The existence of CSCs in colorectal cancer (CRC) was first established through demonstration of enhanced clonogenicity and tumor-forming capacity of this cell subset in human-to-mouse tumor xenotransplantation experiments and subsequently confirmed through lineage-tracing studies in mice. Surface markers for CRC CSC identification and their prospective isolation are now established. Therefore, the application of single-cell omics technologies to CSC characterization, including whole-genome sequencing, RNA sequencing, and epigenetic analyses, opens unprecedented opportunities to discover novel targetable molecular pathways and hence to develop novel strategies for CRC eradication. We review recent advances in this field and discuss the potential implications of next-generation CSC analyses for currently approved and experimental targeted CRC therapies.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Biologia Computacional , Células-Tronco Neoplásicas , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinogênese , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos , Genômica , Humanos , Imunoterapia , Terapia de Alvo Molecular , Análise de Célula Única
9.
Anal Chem ; 94(48): 16821-16830, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395434

RESUMO

Currently, a large number of skin biopsies are taken for each true skin cancer case detected, creating a need for a rapid, high sensitivity, and specificity skin cancer detection tool to reduce the number of unnecessary biopsies taken from benign tissue. Picosecond infrared laser mass spectrometry (PIRL-MS) using a hand-held sampling probe is reported to detect and classify melanoma, squamous cell carcinoma, and normal skin with average sensitivity and specificity values of 86-95% and 91-98%, respectively (at a 95% confidence level) solely requiring 10 s or less of total data collection and analysis time. Classifications are not adversely affected by specimen's quantity of melanin pigments and are mediated by a number of metabolic lipids, further identified herein as potential biomarkers for skin cancer-type differentiation, 19 of which were sufficient here (as a fully characterized metabolite array) to provide high specificity and sensitivity classification of skin cancer types. In situ detection was demonstrated in an intradermal melanoma mouse model wherein in vivo sampling did not cause significant discomfort. PIRL-MS sampling is further shown to be compatible with downstream gross histopathologic evaluations despite loss of tissue from the immediate laser sampling site(s) and can be configured using selective laser pulses to avoid thermal damage to normal skin. Therefore, PIRL-MS may be employed as a decision-support tool to reduce both the subjectivity of clinical diagnosis and the number of unnecessary biopsies currently required for skin cancer screening.


Assuntos
Melanoma , Neoplasias Cutâneas , Camundongos , Animais , Estudos de Viabilidade , Lasers , Neoplasias Cutâneas/diagnóstico , Raios Infravermelhos , Espectrometria de Massas , Melanoma/diagnóstico
10.
Mol Pharm ; 19(5): 1515-1525, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35412842

RESUMO

Nanoparticle encapsulation is an attractive approach to improve the oral bioavailability of hydrophobic therapeutics. The high specific surface area of nanoparticle formulations, combined with the thermodynamically driven increased solubility of an amorphous drug core, promotes rapid drug dissolution. However, the physicochemical properties of the hydrophobic therapeutic can present obstacles to in vitro characterization of nanoparticle formulations. Namely, drugs with low density and high membrane binding affinity frustrate traditional analytical methods to monitor release kinetics from nanoparticles. In this work, cannabidiol (CBD) was encapsulated into nanoparticles with low polydispersity and high drug loading via Flash NanoPrecipitation (FNP), a scalable self-assembly process. Hydroxypropyl methylcellulose acetate succinate (HPMCAS) and lecithin were employed as amphiphilic particle stabilizers during the FNP process. However, the low density and high membrane binding affinity of the amorphous CBD nanoparticle core prevented the characterization of in vitro release kinetics by conventional methods. Released CBD could not be separated from intact nanoparticles by filtration or centrifugation. To address this challenge, an alternative approach is described to coencapsulate 6 nm hydrophobic Fe3O4 colloids with CBD during FNP. The Fe3O4 colloids were added at 33% by mass (approximately 20% by volume) to increase the density of the nanoparticles, resulting in particles with an average diameter of 160 nm (CBD-lecithin-Fe3O4) or 280 nm (CBD-HPMCAS-Fe3O4). This densification enabled the centrifugal separation of dissolved (released) CBD from unreleased CBD during the in vitro assay while avoiding the losses associated with a filtration step. The resulting nanoparticle formulations provided more rapid and complete in vitro dissolution kinetics than bulk CBD, representing a 6-fold improvement in dissolution compared to crystalline CBD. The coencapsulation of high-density Fe3O4 colloids to enable the separation of nanoparticles from release media is a novel approach to measuring in vitro release kinetics of nanoencapsulated low-density, hydrophobic drug molecules.


Assuntos
Canabidiol , Nanopartículas , Coloides/química , Lecitinas , Nanopartículas/química , Tamanho da Partícula , Solubilidade
11.
Nano Lett ; 21(1): 344-352, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33301689

RESUMO

Limited tumor nanoparticle accumulation remains one of the main challenges in cancer nanomedicine. Here, we demonstrate that subtherapeutic photodynamic priming (PDP) enhances the accumulation of nanoparticles in subcutaneous murine prostate tumors ∼3-5-times without inducing cell death, vascular destruction, or tumor growth delay. We also found that PDP resulted in an ∼2-times decrease in tumor collagen content as well as a significant reduction of extracellular matrix density in the subendothelial zone. Enhanced nanoparticle accumulation combined with the reduced extravascular barriers improved therapeutic efficacy in the absence of off-target toxicity, wherein 5 mg/kg of Doxil with PDP was equally effective in delaying tumor growth as 15 mg/kg of Doxil. Overall, this study demonstrates the potential of PDP to enhance tumor nanomedicine accumulation and alleviate tumor desmoplasia without causing cell death or vascular destruction, highlighting the utility of PDP as a minimally invasive priming strategy that can improve therapeutic outcomes in desmoplastic tumors.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Antineoplásicos/uso terapêutico , Masculino , Camundongos , Nanomedicina , Neoplasias/tratamento farmacológico
12.
J Biol Chem ; 295(22): 7774-7788, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317280

RESUMO

Glioblastoma multiforme (GBM) is a malignant brain tumor with a poor prognosis resulting from tumor resistance to anticancer therapy and a high recurrence rate. Compelling evidence suggests that this is driven by subpopulations of cancer stem cells (CSCs) with tumor-initiating potential. ABC subfamily B member 5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found that ABCB5 is expressed in primary GBM tumors, in which its expression was significantly correlated with the CSC marker protein CD133 and with overall poor survival. Moreover, ABCB5 was also expressed by CD133-positive CSCs in the established human U-87 MG, LN-18, and LN-229 GBM cell lines. Antibody- or shRNA-mediated functional ABCB5 blockade inhibited proliferation and survival of GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis in vitro Likewise, in in vivo human GBM xenograft experiments with immunodeficient mice, mAb treatment inhibited growth of mutant TP53, WT PTEN LN-229 tumors, and sensitized LN-229 tumors to TMZ therapy. Mechanistically, we demonstrate that ABCB5 blockade inhibits TMZ-induced G2/M arrest and augments TMZ-mediated cell death. Our results identify ABCB5 as a GBM chemoresistance marker and point to the potential utility of targeting ABCB5 to improve current GBM therapies.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Anticorpos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioblastoma , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas de Neoplasias , RNA Interferente Pequeno , Temozolomida/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Pharm ; 18(3): 1093-1101, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440941

RESUMO

Nanocarriers (NCs) are an attractive class of vehicles for drug delivery with the potential to improve drug efficacy and safety, particularly for intravenous parenteral delivery. Many therapeutics remain challenging to formulate in NCs due to their intrinsic solubilities that frustrate NC loading or result in too rapid release in vivo. Therapeutic conjugate approaches that alter the solubility of a conjugate "prodrug" have been used to enable NC formation and controlled release from NCs using labile linker chemistry. A limitation of this approach has been that a different linker chemistry must be used to produce an adjustable release rate for a single therapeutic. We report on a new approach where the therapeutic conjugate hydrolysis rates are varied by adjusting the excipient formulation of the NC core, not the conjugate linker chemistry. A hydrophobic therapeutic conjugate of camptothecin (PROCPT) is synthesized by conjugating camptothecin (CPT) with an acid derivative of α-tocopherol (vitamin E). The PROCPT compound can be loaded to 50% wt in poly(lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG)-stabilized NCs produced by Flash NanoPrecipitation with particle diameters between 60 and 80 nm. Co-loading a zwitterionic lipid, 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, from 0 to 67% core loading tunes the PROCPT hydrolysis from no observable therapeutic release over 200 h to therapeutic conjugate half-life times of 31 h. For a single therapeutic conjugate molecule, the hydrolysis rate can be tuned by modifying the NC formulation with different excipient concentrations. NCs containing a 50% core loading of PROCPT were lyophilized and encapsulated in a PEG hydrogel matrix to make microparticles for depot delivery with an average diameter of 65 ± 10 µm that provide a sustained, first-order release of CPT with a therapeutic conjugate half-life of 240 h. These results demonstrate a new approach to the formulation of therapeutic NCs with variable release profiles using a single molecular entity therapeutic conjugate.


Assuntos
Camptotecina/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Excipientes/química , Microgéis/química , Nanopartículas/química , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Estabilidade de Medicamentos , Hidrólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lactatos/química , Poliésteres/química , Polietilenoglicóis/química , Solubilidade/efeitos dos fármacos , alfa-Tocoferol/química
14.
Langmuir ; 37(28): 8517-8524, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34236205

RESUMO

Chitosan-coated nanoparticles are a promising class of drug delivery vehicles that have been studied as tools for improving the gastrointestinal delivery of therapeutics. Here we present an analysis of chitosan-coated nanoparticles with an emphasis on characterizing the chitosan polymer properties. Cationic nanoparticles are produced by adsorbing a layer of chitosan HCl on an anionic (-40 mV ζ-potential) polyacrylic acid (PAA) coated primary nanoparticle. Commercially available chitosan (90% deacetylated) must be processed into a nearly completely deacetylated HCl salt form (99% deacetylation); otherwise, primary nanoparticle aggregation occurs. Deacetylated chitosan HCl produces stable, cationic (+35 mV ζ-potential) nanoparticles within 10% of the original anionic particle hydrodynamic diameter at a 1:2 molar ratio of chitosan glucosamine HCl monomers to PAA acrylic acid monomers.


Assuntos
Quitosana , Nanopartículas , Adsorção , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Polieletrólitos
15.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34204001

RESUMO

Radiodynamic therapy (RDT) is a recent extension of conventional photodynamic therapy, in which visible/near infrared light irradiation is replaced by a well-tolerated dose of high-energy X-rays. This enables greater tissue penetration to allow non-invasive treatment of large, deep-seated tumors. We report here the design and testing of a drug delivery system for RDT that is intended to enhance intra- or peri-nuclear localization of the photosensitizer, leading to DNA damage and resulting clonogenic cell kill. This comprises a photosensitizer (Verteporfin, VP) incorporated into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) that are surface-functionalized with a cell-penetrating HIV trans-activator of transcription (TAT) peptide. In addition to a series of physical and photophysical characterization studies, cytotoxicity tests in pancreatic (PANC-1) cancer cells in vitro under 4 Gy X-ray exposure from a clinical 6 MV linear accelerator (LINAC) showed that TAT targeting of the nanoparticles markedly enhances the effectiveness of RDT treatment, particularly when assessed by a clonogenic, i.e., DNA damage-mediated, cell kill.


Assuntos
Composição de Medicamentos , Produtos do Gene tat/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Verteporfina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , DNA/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Lipídeos de Membrana/metabolismo , Nanopartículas/ultraestrutura , Oxigênio Singlete/metabolismo
16.
Lab Invest ; 100(10): 1280-1287, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737408

RESUMO

Polarization-sensitive second harmonic generation (SHG) microscopy is an established imaging technique able to provide information related to specific molecular structures including collagen. In this investigation, polarization-sensitive SHG microscopy was used to investigate changes in the collagen ultrastructure between histopathology slides of normal and diseased human thyroid tissues including follicular nodular disease, Grave's disease, follicular variant of papillary thyroid carcinoma, classical papillary thyroid carcinoma, insular or poorly differentiated carcinoma, and anaplastic or undifferentiated carcinoma ex vivo. The second-order nonlinear optical susceptibility tensor component ratios, χ(2)zzz'/χ(2)zxx' and χ(2)xyz'/χ(2)zxx', were obtained, where χ(2)zzz'/χ(2)zxx' is a structural parameter and χ(2)xyz'/χ(2)zxx' is a measure of the chirality of the collagen fibers. Furthermore, the degree of linear polarization (DOLP) of the SHG signal was measured. A statistically significant increase in χ(2)zzz'/χ(2)zxx' values for all the diseased tissues except insular carcinoma and a statistically significant decrease in DOLP for all the diseased tissues were observed compared to normal thyroid. This finding indicates a higher ultrastructural disorder in diseased collagen and provides an innovative approach to discriminate between normal and diseased thyroid tissues that is complementary to standard histopathology.


Assuntos
Colágeno/metabolismo , Microscopia de Geração do Segundo Harmônico/métodos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Carcinoma Papilar, Variante Folicular/diagnóstico por imagem , Carcinoma Papilar, Variante Folicular/metabolismo , Carcinoma Papilar, Variante Folicular/patologia , Diferenciação Celular , Colágeno/química , Colágeno/ultraestrutura , Diagnóstico Diferencial , Doença de Graves/diagnóstico por imagem , Doença de Graves/metabolismo , Doença de Graves/patologia , Humanos , Microscopia de Geração do Segundo Harmônico/instrumentação , Microscopia de Geração do Segundo Harmônico/estatística & dados numéricos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Doenças da Glândula Tireoide/diagnóstico por imagem , Doenças da Glândula Tireoide/metabolismo , Doenças da Glândula Tireoide/patologia , Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/patologia
17.
Nature ; 511(7509): 353-7, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030174

RESUMO

Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63α-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Limbo da Córnea/citologia , Limbo da Córnea/fisiologia , Regeneração , Células-Tronco/metabolismo , Cicatrização , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/deficiência , Animais , Apoptose , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Transplante de Células-Tronco , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
18.
J Biol Chem ; 293(28): 11166-11178, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29789423

RESUMO

ABC member B5 (ABCB5) mediates multidrug resistance (MDR) in diverse malignancies and confers clinically relevant 5-fluorouracil resistance to CD133-expressing cancer stem cells in human colorectal cancer (CRC). Because of its recently identified roles in normal stem cell maintenance, we hypothesized that ABCB5 might also serve MDR-independent functions in CRC. Here, in a prospective clinical study of 142 CRC patients, we found that ABCB5 mRNA transcripts previously reported not to be significantly expressed in healthy peripheral blood mononuclear cells are significantly enriched in patient peripheral blood specimens compared with non-CRC controls and correlate with CRC disease progression. In human-to-mouse CRC tumor xenotransplantation models that exhibited circulating tumor mRNA, we observed that cancer-specific ABCB5 knockdown significantly reduced detection of these transcripts, suggesting that the knockdown inhibited tumor invasiveness. Mechanistically, this effect was associated with inhibition of expression and downstream signaling of AXL receptor tyrosine kinase (AXL), a proinvasive molecule herein shown to be produced by ABCB5-positive CRC cells. Importantly, rescue of AXL expression in ABCB5-knockdown CRC tumor cells restored tumor-specific transcript detection in the peripheral blood of xenograft recipients, indicating that ABCB5 regulates CRC invasiveness, at least in part, by enhancing AXL signaling. Our results implicate ABCB5 as a critical determinant of CRC invasiveness and suggest that ABCB5 blockade might represent a strategy in CRC therapy, even independently of ABCB5's function as an MDR mediator.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Movimento Celular , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Invasividade Neoplásica , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Exp Eye Res ; 179: 157-167, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447197

RESUMO

This study describes non-invasive photoacoustic imaging to detect and monitor the growth of conjunctival melanomas in vivo. Conjunctival melanomas were induced by injection of melanotic B16F10 cells into the subconjunctival space in syngeneic albino C57BL/6 mice. Non-invasive in vivo photoacoustic tomography was performed before, and after tumor induction up to 2 weeks. Spectral unmixing was performed to determine the location and to assess the distribution of melanin. The melanin photoacoustic signal intensity was quantified from the tumor-bearing and control eyes at all timepoints. For postmortem validation, total tumor and melanotic tumor volumes were measured using H&E stained tumor sections and were compared to in vivo photoacoustic imaging measurements. Photoacoustic imaging non-invasively detected eyes bearing conjunctival tumors of varying sizes. The melanin signal was detected as early as immediately following injection of melanotic tumor cells. Changes in tumor size over time were assessed with changes in the volume and intensity of the melanin signal. Four growing tumors and one regressing tumor were observed. Three tumors without significant change in signal intensity over time were observed, showing variable growth. Photoacoustic melanin signal on the last day of in vivo imaging correlated with postmortem total tumor volume (R2 = 0.81) and melanotic tumor volume (R2 = 0.80). The results of our study show that actively growing conjunctival melanomas can be quantified in a non-invasive manner using in vivo photoacoustic tomography. The photoacoustic melanin signal intensity correlated with total and melanotic tumor volume. This novel in vivo imaging platform may help to assess new treatment modalities to manage ocular tumors.


Assuntos
Neoplasias da Túnica Conjuntiva/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Melanoma/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Animais , Linhagem Celular Tumoral , Neoplasias da Túnica Conjuntiva/metabolismo , Modelos Animais de Doenças , Melaninas/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Imagens de Fantasmas
20.
Psychol Med ; 49(4): 598-606, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29792242

RESUMO

BACKGROUND: A stepped care approach involves patients first receiving low-intensity treatment followed by higher intensity treatment. This two-step randomized controlled trial investigated the efficacy of a sequential stepped care approach for the psychological treatment of binge-eating disorder (BED). METHODS: In the first step, all participants with BED (n = 135) received unguided self-help (USH) based on a cognitive-behavioral therapy model. In the second step, participants who remained in the trial were randomized either to 16 weeks of group psychodynamic-interpersonal psychotherapy (GPIP) (n = 39) or to a no-treatment control condition (n = 46). Outcomes were assessed for USH in step 1, and then for step 2 up to 6-months post-treatment using multilevel regression slope discontinuity models. RESULTS: In the first step, USH resulted in large and statistically significant reductions in the frequency of binge eating. Statistically significant moderate to large reductions in eating disorder cognitions were also noted. In the second step, there was no difference in change in frequency of binge eating between GPIP and the control condition. Compared with controls, GPIP resulted in significant and large improvement in attachment avoidance and interpersonal problems. CONCLUSIONS: The findings indicated that a second step of a stepped care approach did not significantly reduce binge-eating symptoms beyond the effects of USH alone. The study provided some evidence for the second step potentially to reduce factors known to maintain binge eating in the long run, such as attachment avoidance and interpersonal problems.


Assuntos
Transtorno da Compulsão Alimentar/terapia , Terapia Cognitivo-Comportamental/métodos , Psicoterapia de Grupo/métodos , Adulto , Feminino , Humanos , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa