Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 300(4): 107203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508311

RESUMO

We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.


Assuntos
Conotoxinas , Animais , Sequência de Aminoácidos , Conotoxinas/química , Caramujo Conus , Cisteína/química , Dissulfetos/química , Granulinas/química , Granulinas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína
2.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958636

RESUMO

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Assuntos
Evolução Molecular , Neurotoxinas/genética , Poliaminas/química , Aranhas/genética , Sequência de Aminoácidos/genética , Animais , Austrália , Sequência Conservada/genética , Feminino , Humanos , Masculino , Camundongos , Neurotoxinas/química , Neurotoxinas/metabolismo , Peptídeos/genética , Filogenia , Poliaminas/metabolismo , Comportamento Sexual Animal/fisiologia , Venenos de Aranha/genética , Aranhas/patogenicidade , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiologia
3.
J Nat Prod ; 85(7): 1789-1798, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35829679

RESUMO

Scleractinian corals are crucially important to the health of some of the world's most biodiverse, productive, and economically important marine habitats. Despite this importance, analysis of coral peptidomes is still in its infancy. Here we show that the tentacle extract from the stony coral Heliofungia actiniformis is rich in peptides with diverse and novel structures. We have characterized the sequences and three-dimensional structures of four new peptides, three of which have no known homologues. We show that a 2 kDa peptide, Hact-2, promotes significant cell proliferation on human cells and speculate this peptide may be involved in the remarkable regenerative capacity of corals. We found a 3 kDa peptide, Hact-3, encoded within a fascin-like domain, and homologues of Hact-3 are present in the genomes of other coral species. Two additional peptides, Hact-4 and Hact-SCRiP1, with limited sequence similarity, both contain a beta-defensin-like fold and highlight a structural link with the small cysteine-rich proteins (SCRiP) family of proteins found predominantly in corals. Our results provide a first glimpse into the remarkable and unexplored structural diversity of coral peptides, providing insight into their diversity and putative functions and, given the ancient lineage of corals, potential insight into the evolution of structural motifs.


Assuntos
Antozoários , Animais , Biodiversidade , Ecossistema , Humanos , Peptídeos
4.
Biochem Soc Trans ; 49(3): 1279-1285, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156400

RESUMO

Cyclic peptides are widespread throughout the plant kingdom, and display diverse sequences, structures and bioactivities. The potential applications attributed to these peptides and their unusual biosynthesis has captivated the attention of researchers for many years. Several gene sequences for plant cyclic peptides have been discovered over the last two decades but it is only recently that we are beginning to understand the intricacies associated with their biosynthesis. Recent studies have focussed on three main classes of plant derived cyclic peptides, namely orbitides, SFTI related peptides and cyclotides. In this mini-review, we discuss the expansion of the known sequence and structural diversity in these families, insights into the enzymes involved in the biosynthesis, the exciting applications which includes a cyclotide currently in clinical trials for the treatment of multiple sclerosis, and new production methods that are being developed to realise the potential of plant cyclic peptides as pharmaceutical or agricultural agents.


Assuntos
Ciclotídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Animais , Ciclotídeos/química , Ciclotídeos/farmacologia , Cisteína Endopeptidases/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Humanos , Esclerose Múltipla/tratamento farmacológico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo
5.
Mar Drugs ; 19(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073964

RESUMO

Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.


Assuntos
Mordeduras e Picadas/epidemiologia , Mordeduras e Picadas/terapia , Venenos de Peixe/intoxicação , Peixes Venenosos , Animais , Mordeduras e Picadas/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/terapia , Venenos de Peixe/análise , Venenos de Peixe/química , Peixes Venenosos/fisiologia , Geografia , Humanos , Oceano Índico/epidemiologia , Doenças Neuromusculares/epidemiologia , Doenças Neuromusculares/etiologia , Doenças Neuromusculares/terapia , Oceano Pacífico/epidemiologia
6.
Mar Drugs ; 19(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801301

RESUMO

Cone snails are venomous marine predators that rely on fast-acting venom to subdue their prey and defend against aggressors. The conotoxins produced in the venom gland are small disulfide-rich peptides with high affinity and selectivity for their pharmacological targets. A dominant group comprises α-conotoxins, targeting nicotinic acetylcholine receptors. Here, we report on the synthesis, structure determination and biological activity of a novel α-conotoxin, CIC, found in the predatory venom of the piscivorous species Conus catus and its truncated mutant Δ-CIC. CIC is a 4/7 α-conotoxin with an unusual extended N-terminal tail. High-resolution NMR spectroscopy shows a major influence of the N-terminal tail on the apparent rigidity of the three-dimensional structure of CIC compared to the more flexible Δ-CIC. Surprisingly, this effect on the structure does not alter the biological activity, since both peptides selectively inhibit α3ß2 and α6/α3ß2ß3 nAChRs with almost identical sub- to low micromolar inhibition constants. Our results suggest that the N-terminal part of α-conotoxins can accommodate chemical modifications without affecting their pharmacology.


Assuntos
Conotoxinas/isolamento & purificação , Caramujo Conus/metabolismo , Venenos de Moluscos/química , Antagonistas Nicotínicos/isolamento & purificação , Animais , Conotoxinas/química , Conotoxinas/farmacologia , Espectroscopia de Ressonância Magnética , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo
7.
J Nat Prod ; 83(11): 3454-3463, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166137

RESUMO

Marine organisms produce a diverse range of toxins and bioactive peptides to support predation, competition, and defense. The peptide repertoires of stony corals (order Scleractinia) remain relatively understudied despite the presence of tentacles used for predation and defense that are likely to contain a range of bioactive compounds. Here, we show that a tentacle extract from the mushroom coral, Heliofungia actiniformis, contains numerous peptides with a range of molecular weights analogous to venom profiles from species such as cone snails. Using NMR spectroscopy and mass spectrometry we characterized a 12-residue peptide (Hact-1) with a new sequence (GCHYTPFGLICF) and well-defined ß-hairpin structure stabilized by a single disulfide bond. The sequence is encoded within the genome of the coral and expressed in the polyp body tissue. The structure present is common among toxins and venom peptides, but Hact-1 does not show activity against select examples of Gram-positive and Gram-negative bacteria or a range of ion channels, common properties of such peptides. Instead, it appears to have a limited effect on human peripheral blood mononuclear cells, but the ecological function of the peptide remains unknown. The discovery of this peptide from H. actiniformis is likely to be the first of many from this and related species.


Assuntos
Antozoários/química , Antibacterianos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Peptídeos/farmacologia
8.
J Mammal ; 104(4): 892-906, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545668

RESUMO

Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded.

9.
Front Pharmacol ; 14: 1277143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034993

RESUMO

The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.

10.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572327

RESUMO

Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodulatory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-terminal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have been done on this domain. Here we have determined the three-dimensional solution structure of the N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural comparisons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a high degree of variability in the ß-hairpin region of these eukaryotic N-AsnRS proteins, but similarities in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region (IDR) model predictions were also evident in this comparison. Empirical structural data such as that presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based structure modelling and prediction of IDRs in the future.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa