Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Med Genet A ; 179(3): 373-380, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582773

RESUMO

The most frequent cause of isolated complex III deficits is mutations to the nuclear-encoded ATPase BCS1L. Disease phenotypes are varied and can be as mild as Björnstad syndrome, characterized by pili torti and sensorineural hearing loss, or as severe as GRACILE syndrome, characterized by growth restriction, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death. BCS1L mutations are also linked to an undefined complex III deficiency, a heterogeneous condition generally involving low birth weight, renal and hepatic pathologies, hypotonia, and developmental delays. We analyzed all published patient cases of mutations to BCS1L and modeled the tertiary and quaternary structure of the BCS1L protein to map the location of disease-causing BCS1L mutations. We show that higher order structural analysis can be used to understand the phenotype observed in a patient with the novel compound heterozygous c.550C>T(p.Arg184Cys) and c.838C>T(p.Leu280Phe) mutations. More broadly, higher order structural analysis reveals genotype-phenotype relationships within the intermediate complex III deficiency category that help to make sense of the spectrum of observed phenotypes. We propose a change in nomenclature that unifies the intermediate phenotype under "BCS1L Mitopathies". Patterns in genotype-phenotype correlations within these BCS1L Mitopathies are evident in the context of the tertiary and quaternary structure of BCS1L.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação , Fenótipo , Alelos , Substituição de Aminoácidos , Feminino , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Modelos Moleculares , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Relação Estrutura-Atividade , Sequenciamento do Exoma
2.
Biomolecules ; 13(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36830626

RESUMO

Insulin is amongst the human genome's most well-studied genes/proteins due to its connection to metabolic health. Within this article, we review literature and data to build a knowledge base of Insulin (INS) genetics that influence transcription, transcript processing, translation, hormone maturation, secretion, receptor binding, and metabolism while highlighting the future needs of insulin research. The INS gene region has 2076 unique variants from population genetics. Several variants are found near the transcriptional start site, enhancers, and following the INS transcripts that might influence the readthrough fusion transcript INS-IGF2. This INS-IGF2 transcript splice site was confirmed within hundreds of pancreatic RNAseq samples, lacks drift based on human genome sequencing, and has possible elevated expression due to viral regulation within the liver. Moreover, a rare, poorly characterized African population-enriched variant of INS-IGF2 results in a loss of the stop codon. INS transcript UTR variants rs689 and rs3842753, associated with type 1 diabetes, are found in many pancreatic RNAseq datasets with an elevation of the 3'UTR alternatively spliced INS transcript. Finally, by combining literature, evolutionary profiling, and structural biology, we map rare missense variants that influence preproinsulin translation, proinsulin processing, dimer/hexamer secretory storage, receptor activation, and C-peptide detection for quasi-insulin blood measurements.


Assuntos
Diabetes Mellitus Tipo 1 , Medicina de Precisão , Humanos , Proinsulina , Diabetes Mellitus Tipo 1/genética , Pâncreas , Genômica
3.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672963

RESUMO

The SOX transcription factor family is pivotal in controlling aspects of development. To identify genotype-phenotype relationships of SOX proteins, we performed a non-biased study of SOX using 1890 open-reading frame and 6667 amino acid sequences in combination with structural dynamics to interpret 3999 gnomAD, 485 ClinVar, 1174 Geno2MP, and 4313 COSMIC human variants. We identified, within the HMG (High Mobility Group)- box, twenty-seven amino acids with changes in multiple SOX proteins annotated to clinical pathologies. These sites were screened through Geno2MP medical phenotypes, revealing novel SOX15 R104G associated with musculature abnormality and SOX8 R159G with intellectual disability. Within gnomAD, SOX18 E137K (rs201931544), found within the HMG box of ~0.8% of Latinx individuals, is associated with seizures and neurological complications, potentially through blood-brain barrier alterations. A total of 56 highly conserved variants were found at sites outside the HMG-box, including several within the SOX2 HMG-box-flanking region with neurological associations, several in the SOX9 dimerization region associated with Campomelic Dysplasia, SOX14 K88R (rs199932938) flanking the HMG box associated with cardiovascular complications within European populations, and SOX7 A379V (rs143587868) within an SOXF conserved far C-terminal domain heterozygous in 0.716% of African individuals with associated eye phenotypes. This SOX data compilation builds a robust genotype-to-phenotype association for a gene family through more robust ortholog data integration.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Fatores de Transcrição SOX , Humanos , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Transcrição SOX/genética , Sequência de Aminoácidos , Dimerização , Genótipo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição SOXE/genética
4.
Curr Top Med Chem ; 3(3): 321-38, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12570766

RESUMO

Topoisomerase II is an essential enzyme that plays critical roles in many DNA processes, including chromosome segregation. In order to carry out its important physiological functions, topoisomerase II creates and rejoins double-stranded breaks in the genetic material. Thus, while the enzyme is necessary for cell survival, it also has the capacity to fragment the genome. Topoisomerase II-mediated DNA breaks are sequestered within a covalent enzyme-DNA complex. Normally, these "cleavage complexes" are present at low levels and are tolerated by the cell. However, conditions that significantly increase the physiological concentration or life-time of topoisomerase II-DNA cleavage complexes lead to chromosomal translocations and other mutagenic events, and can induce cell death pathways. The potentially lethal aspect of enzyme mechanism has been exploited by a number of highly successful anticancer agents. Since drugs that increase levels of topoisomerase II-DNA cleavage complexes transform the enzyme into a potent cellular toxin, they are referred to as topoisomerase II "poisons" to distinguish them from compounds that inhibit the catalytic activity of the enzyme. Recent evidence indicates that many DNA lesions also act as topoisomerase II poisons. This finding has provided tremendous insight into enzyme and drug action and raises important questions regarding the physiological interactions of topoisomerase II with DNA damage. Since the DNA cleavage and ligation reactions of topoisomerase II are fundamental to its physiological and pharmacological functions, this review will focus on how the enzyme cuts and rejoins the double helix and how these reactions are altered by topoisomerase II poisons.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Dano ao DNA , DNA Topoisomerases Tipo II/química , Inibidores Enzimáticos/farmacologia , Hidrólise , Conformação Proteica , Inibidores da Topoisomerase II
5.
Biochemistry ; 46(28): 8217-25, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17580961

RESUMO

Etoposide is one of the most successful chemotherapeutic agents used for the treatment of human cancers. The drug kills cells by inhibiting the ability of topoisomerase II to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. Etoposide is composed of a polycyclic ring system (rings A-D), a glycosidic moiety at the C4 position, and a pendent ring (E-ring) at the C1 position. Although drug-enzyme contacts, as opposed to drug-DNA interactions, mediate the entry of etoposide into the topoisomerase II-drug-DNA complex, the substituents on etoposide that interact with the enzyme have not been identified. Therefore, saturation transfer difference [1H]-nuclear magnetic resonance spectroscopy and protein-drug competition binding assays were employed to define the groups on etoposide that associate with yeast topoisomerase II and human topoisomerase IIalpha. Results indicate that the geminal protons of the A-ring, the H5 and H8 protons of the B-ring, and the H2' and H6' protons and the 3'- and 5'-methoxyl protons of the pendent E-ring interact with both enzymes in the binary protein-ligand complexes. In contrast, no significant nuclear Overhauser enhancement signals arising from the C-ring, the D-ring, or the C4 glycosidic moiety were observed with either enzyme, suggesting that there is limited or no contact between these portions of etoposide and topoisomerase II in the binary complex. The functional importance of E-ring substituents was confirmed by topoisomerase II-mediated DNA cleavage assays.


Assuntos
Antineoplásicos Fitogênicos/química , DNA Topoisomerases Tipo II/química , Etoposídeo/química , Antígenos de Neoplasias/química , Ligação Competitiva , Proteínas de Ligação a DNA/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa