Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 49(1): 246-256, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33693967

RESUMO

PURPOSE: Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS: This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS: Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.


Assuntos
Compostos Radiofarmacêuticos , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Tomografia Computadorizada por Raios X
2.
Eur J Nucl Med Mol Imaging ; 49(1): 137-145, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338808

RESUMO

PURPOSE: To provide a comprehensive assessment of the novel 18 kDa translocator protein (TSPO) radiotracer, [18F]LW223, kinetics in the heart and brain when using a simplified imaging approach. METHODS: Naive adult rats and rats with surgically induced permanent coronary artery ligation received a bolus intravenous injection of [18F]LW223 followed by 120 min PET scanning with arterial blood sampling throughout. Kinetic modelling of PET data was applied to estimated rate constants, total volume of distribution (VT) and binding potential transfer corrected (BPTC) using arterial or image-derived input function (IDIF). Quantitative bias of simplified protocols using IDIF versus arterial input function (AIF) and stability of kinetic parameters for PET imaging data of different length (40-120 min) were estimated. RESULTS: PET outcome measures estimated using IDIF significantly correlated with those derived with invasive AIF, albeit with an inherent systematic bias. Truncation of the dynamic PET scan duration to less than 100 min reduced the stability of the kinetic modelling outputs. Quantification of [18F]LW223 uptake kinetics in the brain and heart required the use of different outcome measures, with BPTC more stable in the heart and VT more stable in the brain. CONCLUSION: Modelling of [18F]LW223 PET showed the use of simplified IDIF is acceptable in the rat and the minimum scan duration for quantification of TSPO expression in rats using kinetic modelling with this radiotracer is 100 min. Carefully assessing kinetic outcome measures when conducting a systems level as oppose to single-organ centric analyses is crucial. This should be taken into account when assessing the emerging role of the TSPO heart-brain axis in the field of PET imaging.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Ratos , Receptores de GABA-A/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 47(11): 2589-2601, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32211931

RESUMO

Longitudinal mouse PET imaging is becoming increasingly popular due to the large number of transgenic and disease models available but faces challenges. These challenges are related to the small size of the mouse brain and the limited spatial resolution of microPET scanners, along with the small blood volume making arterial blood sampling challenging and impossible for longitudinal studies. The ability to extract an input function directly from the image would be useful for quantification in longitudinal small animal studies where there is no true reference region available such as TSPO imaging. METHODS: Using dynamic, whole-body 18F-DPA-714 PET scans (60 min) in a mouse model of hippocampal sclerosis, we applied a factor analysis (FA) approach to extract an image-derived input function (IDIF). This mouse-specific IDIF was then used for 4D-resolution recovery and denoising (4D-RRD) that outputs a dynamic image with better spatial resolution and noise properties, and a map of the total volume of distribution (VT) was obtained using a basis function approach in a total of 9 mice with 4 longitudinal PET scans each. We also calculated percent injected dose (%ID) with and without 4D-RRD. The VT and %ID parameters were compared to quantified ex vivo autoradiography using regional correlations of the specific binding from autoradiography against VT and %ID parameters. RESULTS: The peaks of the IDIFs were strongly correlated with the injected dose (Pearson R = 0.79). The regional correlations between the %ID estimates and autoradiography were R = 0.53 without 4D-RRD and 0.72 with 4D-RRD over all mice and scans. The regional correlations between the VT estimates and autoradiography were R = 0.66 without 4D-RRD and 0.79 with application of 4D-RRD over all mice and scans. CONCLUSION: We present a FA approach for IDIF extraction which is robust, reproducible and can be used in quantification methods for resolution recovery, denoising and parameter estimation. We demonstrated that the proposed quantification method yields parameter estimates closer to ex vivo measurements than semi-quantitative methods such as %ID and is immune to tracer binding in tissue unlike reference tissue methods. This approach allows for accurate quantification in longitudinal PET studies in mice while avoiding repeated blood sampling.


Assuntos
Algoritmos , Tomografia por Emissão de Pósitrons , Animais , Modelos Animais de Doenças , Camundongos
5.
Int J Neuropsychopharmacol ; 21(7): 687-696, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635319

RESUMO

Background: Modafinil, a nonamphetaminic wake-promoting compound, is prescribed as first line therapy in narcolepsy, an invalidating disorder characterized by excessive daytime sleepiness and cataplexy. Although its mode of action remains incompletely known, recent studies indicated that modafinil modulates astroglial connexin-based gap junctional communication as administration of a low dose of flecainide, an astroglial connexin inhibitor, enhanced the wake-promoting and procognitive activity of modafinil in rodents and healthy volunteers. The aim of this study is to investigate changes in glucose cerebral metabolism in rodents, induced by the combination of modafinil+flecainide low dose (called THN102). Methods: The impact of THN102 on brain glucose metabolism was noninvasively investigated using 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography imaging in Sprague-Dawley male rats. Animals were injected with vehicle, flecainide, modafinil, or THN102 and further injected with 18F-2-fluoro-2-deoxy-D-glucose followed by 60-minute Positron Emission Tomography acquisition. 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography images were coregistered to a rat brain template and normalized from the total brain Positron Emission Tomography signal. Voxel-to-voxel analysis was performed using SPM8 software. Comparison of brain glucose metabolism between groups was then performed. Results: THN102 significantly increased regional brain glucose metabolism as it resulted in large clusters of 18F-2-fluoro-2-deoxy-D-glucose uptake localized in the cortex, striatum, and amygdala compared with control or drugs administered alone. These regions, highly involved in the regulation of sleep-wake cycle, emotions, and cognitive functions were hence quantitatively modulated by THN102. Conclusion: Data presented here provide the first evidence of a regional brain activation induced by THN102, currently being tested in a phase II clinical trial in narcoleptic patients.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Flecainida/farmacologia , Fluordesoxiglucose F18/farmacocinética , Modafinila/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Promotores da Vigília/farmacologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Combinação de Medicamentos , Flecainida/administração & dosagem , Masculino , Modafinila/administração & dosagem , Ratos , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Promotores da Vigília/administração & dosagem
6.
Epilepsia ; 59(6): 1234-1244, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29672844

RESUMO

OBJECTIVE: Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. METHODS: The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. RESULTS: TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. SIGNIFICANCE: TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Neuroglia/patologia , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluordesoxiglucose F18/farmacocinética , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Ácido Caínico/toxicidade , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Receptores de GABA/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Tomógrafos Computadorizados
8.
Neuroimage ; 118: 484-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26080302

RESUMO

Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Método de Monte Carlo , Ratos
9.
Neuroimage ; 99: 365-76, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24862069

RESUMO

PURPOSE: The partial saturation approach (PSA) is a simple, single injection experimental protocol that will estimate both B(avail) and appK(D) without the use of blood sampling. This makes it ideal for use in longitudinal studies of neurodegenerative diseases in the rodent. The aim of this study was to increase the range and applicability of the PSA by developing a data driven strategy for determining reliable regional estimates of receptor density (B(avail)) and in vivo affinity (1/appK(D)), and validate the strategy using a simulation model. METHODS: The data driven method uses a time window guided by the dynamic equilibrium state of the system as opposed to using a static time window. To test the method, simulations of partial saturation experiments were generated and validated against experimental data. The experimental conditions simulated included a range of receptor occupancy levels and three different B(avail) and appK(D) values to mimic diseases states. Also the effect of using a reference region and typical PET noise on the stability and accuracy of the estimates was investigated. RESULTS: The investigations showed that the parameter estimates in a simulated healthy mouse, using the data driven method were within 10±30% of the simulated input for the range of occupancy levels simulated. Throughout all experimental conditions simulated, the accuracy and robustness of the estimates using the data driven method were much improved upon the typical method of using a static time window, especially at low receptor occupancy levels. Introducing a reference region caused a bias of approximately 10% over the range of occupancy levels. CONCLUSIONS: Based on extensive simulated experimental conditions, it was shown the data driven method provides accurate and precise estimates of B(avail) and appK(D) for a broader range of conditions compared to the original method.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Antagonistas de Dopamina/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Racloprida/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Receptores de Dopamina D2/metabolismo , Animais , Simulação por Computador , Injeções , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/diagnóstico por imagem , Reprodutibilidade dos Testes
10.
Neuroimage ; 97: 29-40, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24742918

RESUMO

Positron emission tomography (PET) with [(11)C]Raclopride is an important tool for studying dopamine D2 receptor expression in vivo. [(11)C]Raclopride PET binding experiments conducted using the Partial Saturation Approach (PSA) allow the estimation of receptor density (B(avail)) and the in vivo affinity appK(D). The PSA is a simple, single injection, single scan experimental protocol that does not require blood sampling, making it ideal for use in longitudinal studies. In this work, we generated a complete Monte Carlo simulated PET study involving two groups of scans, in between which a biological phenomenon was inferred (a 30% decrease of B(avail)), and used it in order to design an optimal data processing chain for the parameter estimation from PSA data. The impact of spatial smoothing, noise removal and image resolution recovery technique on the statistical detection was investigated in depth. We found that image resolution recovery using iterative deconvolution of the image with the system point spread function associated with temporal data denoising greatly improves the accuracy and the statistical reliability of detecting the imposed phenomenon. Before optimisation, the inferred B(avail) variation between the two groups was underestimated by 42% and detected in 66% of cases, while a false decrease of appK(D) by 13% was detected in more than 11% of cases. After optimisation, the calculated B(avail) variation was underestimated by only 3.7% and detected in 89% of cases, while a false slight increase of appK(D) by 3.7% was detected in only 2% of cases. We found during this investigation that it was essential to adjust a factor that accounts for difference in magnitude between the non-displaceable ligand concentrations measured in the target and in the reference regions, for different data processing pathways as this ratio was affected by different image resolutions.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Animais , Simulação por Computador , Interpretação Estatística de Dados , Antagonistas de Dopamina , Processamento de Imagem Assistida por Computador , Camundongos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Racloprida , Compostos Radiofarmacêuticos , Receptores de Dopamina D2/efeitos dos fármacos , Reprodutibilidade dos Testes
11.
Brain Commun ; 6(1): fcae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304004

RESUMO

The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Sidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.

12.
Neuroinformatics ; 21(2): 457-468, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622500

RESUMO

Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved [Formula: see text] correlation with PPET, with absolute difference [Formula: see text] for linearised Logan and MRTM2 methods, and [Formula: see text] correlation with QModeling, with absolute difference [Formula: see text] for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ([Formula: see text]), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem
13.
Sci Adv ; 9(23): eabq7595, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294768

RESUMO

Autoimmune limbic encephalitis (ALE) presents with new-onset mesial temporal lobe seizures, progressive memory disturbance, and other behavioral and cognitive changes. CD8 T cells are considered to play a key role in those cases where autoantibodies (ABs) target intracellular antigens or no ABs were found. Assessment of such patients presents a clinical challenge, and novel noninvasive imaging biomarkers are urgently needed. Here, we demonstrate that visualization of the translocator protein (TSPO) with [18F]DPA-714-PET-MRI reveals pronounced microglia activation and reactive gliosis in the hippocampus and amygdala of patients suspected with CD8 T cell ALE, which correlates with FLAIR-MRI and EEG alterations. Back-translation into a preclinical mouse model of neuronal antigen-specific CD8 T cell-mediated ALE allowed us to corroborate our preliminary clinical findings. These translational data underline the potential of [18F]DPA-714-PET-MRI as a clinical molecular imaging method for the direct assessment of innate immunity in CD8 T cell-mediated ALE.


Assuntos
Encefalite Límbica , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Encefalite Límbica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
14.
EJNMMI Res ; 12(1): 29, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35553267

RESUMO

BACKGROUND: Despite its widespread use, the semi-quantitative standardized uptake value ratio (SUVR) may be biased compared with the distribution volume ratio (DVR). This bias may be partially explained by changes in cerebral blood flow (CBF) and is likely to be also dependent on the extent of the underlying amyloid-ß (Aß) burden. This study aimed to compare SUVR with DVR and to evaluate the effects of underlying Aß burden and CBF on bias in SUVR in mainly cognitively unimpaired participants. Participants were scanned according to a dual-time window protocol, with either [18F]flutemetamol (N = 90) or [18F]florbetaben (N = 31). The validated basisfunction-based implementation of the two-step simplified reference tissue model was used to derive DVR and R1 parametric images, and SUVR was calculated from 90 to 110 min post-injection, all with the cerebellar grey matter as reference tissue. First, linear regression and Bland-Altman analyses were used to compare (regional) SUVR with DVR. Then, generalized linear models were applied to evaluate whether (bias in) SUVR relative to DVR could be explained by R1 for the global cortical average (GCA), precuneus, posterior cingulate, and orbitofrontal region. RESULTS: Despite high correlations (GCA: R2 ≥ 0.85), large overestimation and proportional bias of SUVR relative to DVR was observed. Negative associations were observed between both SUVR or SUVRbias and R1, albeit non-significant. CONCLUSION: The present findings demonstrate that bias in SUVR relative to DVR is strongly related to underlying Aß burden. Furthermore, in a cohort consisting mainly of cognitively unimpaired individuals, the effect of relative CBF on bias in SUVR appears limited. EudraCT Number: 2018-002277-22, registered on: 25-06-2018.

15.
Neuropsychopharmacology ; 46(6): 1220-1228, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33603137

RESUMO

A wide range of buprenorphine doses are used for either pain management or maintenance therapy in opioid addiction. The complex in vitro profile of buprenorphine, with affinity for µ-, δ-, and κ-opioid receptors (OR), makes it difficult to predict its dose-related neuropharmacology in vivo. In rats, microPET imaging and pretreatment by OR antagonists were performed to assess the binding of radiolabeled buprenorphine (microdose 11C-buprenorphine) to OR subtypes in vivo (n = 4 per condition). The µ-selective antagonist naloxonazine (10 mg/kg) and the non-selective OR antagonist naloxone (1 mg/kg) blocked the binding of 11C-buprenorphine, while pretreatment by the δ-selective (naltrindole, 3 mg/kg) or the κ-selective antagonist (norbinaltorphimine, 10 mg/kg) did not. In four macaques, PET imaging and kinetic modeling enabled description of the regional brain kinetics of 11C-buprenorphine, co-injected with increasing doses of unlabeled buprenorphine. No saturation of the brain penetration of buprenorphine was observed for doses up to 0.11 mg/kg. Regional differences in buprenorphine-associated receptor occupancy were observed. Analgesic doses of buprenorphine (0.003 and 0.006 mg/kg), respectively, occupied 20% and 49% of receptors in the thalamus while saturating the low but significant binding observed in cerebellum and occipital cortex. Occupancy >90% was achieved in most brain regions with plasma concentrations >7 µg/L. PET data obtained after co-injection of an analgesic dose of buprenorphine (0.003 mg/kg) predicted the binding potential of microdose 11C-buprenorphine. This strategy could be further combined with pharmacodynamic exploration or pharmacological MRI to investigate the neuropharmacokinetics and neuroreceptor correlate, at least at µ-OR, of the acute effects of buprenorphine in humans.


Assuntos
Buprenorfina , Animais , Encéfalo/diagnóstico por imagem , Cinética , Antagonistas de Entorpecentes/farmacologia , Neuroimagem , Ratos
16.
Parkinsonism Relat Disord ; 82: 29-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242662

RESUMO

INTRODUCTION: Increasing evidence suggests that neuroinflammation is active in Parkinson disease (PD) and contributes to neurodegeneration. This process can be studied in vivo with PET and radioligands targeting TSPO, upregulated in activated microglia. Initial PET studies investigating microglial activation in PD with the [11C]-PK11195 have provided inconclusive results. Here we assess the presence and distribution of neuroinflammatory response in PD patients using [18F]-DPA714 and to correlate imaging biomarkers to dopamine transporter imaging and clinical status. METHODS: PD patients (n = 24, Hoehn and Yahr I-III) and 28 healthy controls were scanned with [18F]-DPA714 and [11C]-PE2I and analyzed. They were all genotyped for TSPO polymorphism. Regional binding parameters were estimated (reference Logan graphical approach with supervised cluster analysis). Impact of TSPO genotype was analyzed using Wilcoxon signed-rank test. Differences between groups were investigated using a two-way ANOVA and Tukey post hoc tests. RESULTS: PD patients showed significantly higher [18F]-DPA714 binding compared to healthy controls bilaterally in the midbrain (p < 0.001), the frontal cortex (p = 0.001), and the putamen contralateral to the more clinically affected hemibody (p = 0.038). Microglial activation in these regions did not correlate with the severity of motor symptoms, disease duration nor putaminal [11C]-PE2I uptake. However, there was a trend toward a correlation between cortical TSPO binding and disease duration (p = 0.015 uncorrected, p = 0.07 after Bonferroni correction). CONCLUSION: [18F]-DPA714 binding confirmed that there is a specific topographic pattern of microglial activation in the nigro-striatal pathway and the frontal cortex of PD patients. TRIAL REGISTRATION: Trial registration: INFLAPARK, NCT02319382. Registered 18 December 2014- Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02319382.


Assuntos
Progressão da Doença , Lobo Frontal/metabolismo , Inflamação , Mesencéfalo/metabolismo , Microglia/metabolismo , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Putamen/metabolismo , Receptores de GABA/metabolismo , Idoso , Feminino , Radioisótopos de Flúor/farmacocinética , Lobo Frontal/diagnóstico por imagem , Humanos , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Mesencéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Nortropanos/farmacocinética , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Fatores de Tempo
17.
J Nucl Med ; 62(4): 536-544, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32859708

RESUMO

Myocardial infarction (MI) is one of the leading causes of death worldwide, and inflammation is central to tissue response and patient outcomes. The 18-kDa translocator protein (TSPO) has been used in PET as an inflammatory biomarker. The aims of this study were to screen novel, fluorinated, TSPO radiotracers for susceptibility to the rs6971 genetic polymorphism using in vitro competition binding assays in human brain and heart; assess whether the in vivo characteristics of our lead radiotracer, 18F-LW223, are suitable for clinical translation; and validate whether 18F-LW223 can detect macrophage-driven inflammation in a rat MI model. Methods: Fifty-one human brain and 29 human heart tissue samples were screened for the rs6971 polymorphism. Competition binding assays were conducted with 3H-PK11195 and the following ligands: PK11195, PBR28, and our novel compounds (AB5186 and LW223). Naïve rats and mice were used for in vivo PET kinetic studies, radiometabolite studies, and dosimetry experiments. Rats underwent permanent coronary artery ligation and were scanned using PET/CT with an invasive input function at 7 d after MI. For quantification of PET signal in the hypoperfused myocardium, K1 (rate constant for transfer from arterial plasma to tissues) was used as a surrogate marker of perfusion to correct the binding potential for impaired radiotracer transfer from plasma to tissue (BPTC). Results: LW223 binding to TSPO was not susceptible to the rs6971 genetic polymorphism in human brain and heart samples. In rodents, 18F-LW223 displayed a specific uptake consistent with TSPO expression, a slow metabolism in blood (69% of parent at 120 min), a high plasma free fraction of 38.5%, and a suitable dosimetry profile (effective dose of 20.5-24.5 µSv/MBq). 18F-LW223 BPTC was significantly higher in the MI cohort within the infarct territory of the anterior wall relative to the anterior wall of naïve animals (32.7 ± 5.0 vs. 10.0 ± 2.4 cm3/mL/min, P ≤ 0.001). Ex vivo immunofluorescent staining for TSPO and CD68 (macrophage marker) resulted in the same pattern seen with in vivo BPTC analysis. Conclusion:18F-LW223 is not susceptible to the rs6971 genetic polymorphism in in vitro assays, has favorable in vivo characteristics, and is able to accurately map macrophage-driven inflammation after MI.


Assuntos
Macrófagos/metabolismo , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/imunologia , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de GABA/metabolismo , Animais , Radioisótopos de Flúor/análise , Inflamação/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Traçadores Radioativos , Ratos Sprague-Dawley , Receptores de GABA/genética
18.
J Cereb Blood Flow Metab ; 40(5): 1103-1116, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31238764

RESUMO

The 18 kDa translocator protein (TSPO) is the main molecular target to image neuroinflammation by positron emission tomography (PET). However, TSPO-PET quantification is complex and none of the kinetic modelling approaches has been validated using a voxel-by-voxel comparison of TSPO-PET data with the actual TSPO levels of expression. Here, we present a single case study of binary classification of in vivo PET data to evaluate the statistical performance of different TSPO-PET quantification methods. To that end, we induced a localized and adjustable increase of TSPO levels in a non-human primate brain through a viral-vector strategy. We then performed a voxel-wise comparison of the different TSPO-PET quantification approaches providing parametric [18F]-DPA-714 PET images, with co-registered in vitro three-dimensional TSPO immunohistochemistry (3D-IHC) data. A data matrix was extracted from each brain hemisphere, containing the TSPO-IHC and TSPO-PET data for each voxel position. Each voxel was then classified as false or true, positive or negative after comparison of the TSPO-PET measure to the reference 3D-IHC method. Finally, receiver operating characteristic curves (ROC) were calculated for each TSPO-PET quantification method. Our results show that standard uptake value ratios using cerebellum as a reference region (SUVCBL) has the most optimal ROC score amongst all non-invasive approaches.


Assuntos
Encéfalo , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/análise , Animais , Radioisótopos de Flúor/análise , Imuno-Histoquímica , Macaca fascicularis , Masculino , Pirazóis/análise , Pirimidinas/análise , Compostos Radiofarmacêuticos/análise
19.
J Cereb Blood Flow Metab ; 39(5): 874-885, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29135382

RESUMO

The 18 kDa translocator protein (TSPO) is a marker of microglia activation and the main target of positron emission tomography (PET) ligands for neuroinflammation. Previous works showed that accounting for TSPO endothelial binding improves PET quantification for [11C]PBR28, [18F]DPA714 and [11C]-R-PK11195. It is still unclear, however, whether the vascular signal is tracer-dependent. This work aims to explore the relationship between the TSPO vascular and tissue components for PET tracers with varying affinity, also assessing the impact of affinity towards the differentiability amongst kinetics and the ensuing ligand amenability to cluster analysis for the extraction of a reference region. First, we applied the compartmental model accounting for vascular binding to [11C]-R-PK11195 data from six healthy subjects. Then, we compared the [11C]-R-PK11195 vascular binding estimates with previously published values for [18F]DPA714 and [11C]PBR28. Finally, we determined the suitability for reference region extraction by calculating the angle between grey and white matter kinetics. Our results showed that endothelial binding is common to all TSPO tracers and proportional to their affinity. By consequence, grey and white matter kinetics were most similar for the radioligand with the highest affinity (i.e. [11C]PBR28), hence poorly suited for the extraction of a reference region using supervised clustering.


Assuntos
Células Endoteliais/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/sangue , Radioisótopos de Carbono/metabolismo , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/metabolismo , Humanos , Cinética , Ligantes , Modelos Biológicos , Pirazóis/análise , Pirazóis/sangue , Pirazóis/metabolismo , Pirimidinas/análise , Pirimidinas/sangue , Pirimidinas/metabolismo , Receptores de GABA/análise , Receptores de GABA/sangue , Substância Branca/irrigação sanguínea , Substância Branca/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa