Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104883, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269947

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has had considerable success in the treatment of B-cell malignancies. Targeting the B-lineage marker CD19 has brought great advances to the treatment of acute lymphoblastic leukemia and B-cell lymphomas. However, relapse remains an issue in many cases. Such relapse can result from downregulation or loss of CD19 from the malignant cell population or expression of alternate isoforms. Consequently, there remains a need to target alternative B-cell antigens and diversify the spectrum of epitopes targeted within the same antigen. CD22 has been identified as a substitute target in cases of CD19-negative relapse. One anti-CD22 antibody-clone m971-targets a membrane-proximal epitope of CD22 and has been widely validated and used in the clinic. Here, we have compared m971-CAR with a novel CAR derived from IS7, an antibody that targets a central epitope on CD22. The IS7-CAR has superior avidity and is active and specific against CD22-positive targets, including B-acute lymphoblastic leukemia patient-derived xenograft samples. Side-by-side comparisons indicated that while IS7-CAR killed less rapidly than m971-CAR in vitro, it remains efficient in controlling lymphoma xenograft models in vivo. Thus, IS7-CAR presents a potential alternative candidate for the treatment of refractory B-cell malignancies.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Antígenos CD19 , Epitopos , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva
2.
Cancer Immunol Immunother ; 73(2): 30, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279989

RESUMO

Recently, a breakthrough immunotherapeutic strategy of chimeric antigen receptor (CAR) T-cells has been introduced to hematooncology. However, to apply this novel treatment in solid cancers, one must identify suitable molecular targets in the tumors of choice. CEACAM family proteins are involved in the progression of a range of malignancies, including pancreatic and breast cancers, and pose attractive targets for anticancer therapies. In this work, we used a new CEACAM-targeted 2A3 single-domain antibody-based chimeric antigen receptor T-cells to evaluate their antitumor properties in vitro and in animal models. Originally, 2A3 antibody was reported to target CEACAM6 molecule; however, our in vitro co-incubation experiments showed activation and high cytotoxicity of 2A3-CAR T-cells against CEACAM5 and/or CEACAM6 high human cell lines, suggesting cross-reactivity of this antibody. Moreover, 2A3-CAR T-cells tested in vivo in the BxPC-3 xenograft model demonstrated high efficacy against pancreatic cancer xenografts in both early and late intervention treatment regimens. Our results for the first time show an enhanced targeting toward CEACAM5 and CEACAM6 molecules by the new 2A3 sdAb-based CAR T-cells. The results strongly support the further development of 2A3-CAR T-cells as a potential treatment strategy against CEACAM5/6-overexpressing cancers.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular , Linfócitos T , Imunoterapia Adotiva/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
3.
Haematologica ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841802

RESUMO

Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia (Ph+ BCPALL) is a high-risk acute lymphoblastic leukemia subtype characterized by the presence of BCR::ABL1 fusion gene. Tyrosine kinase inhibitors (TKIs) combined with chemotherapy are established as the first-line treatment. Additionally, rituximab (RTX), an anti-CD20 monoclonal antibody (mAb) is administered in adult BCP-ALL patients with ≥20% of CD20+ blasts. In this study, we observed a marked prevalence of CD20 expression in patients diagnosed with Ph+ BCP-ALL, indicating a potential widespread clinical application of RTX in combination with TKIs. Consequently, we examined the influence of TKIs on the antitumor effectiveness of anti-CD20 mAbs by evaluating CD20 surface levels and conducting in vitro functional assays. All tested TKIs were found to uniformly downregulate CD20 on leukemic cells, diminishing the efficacy of RTX-mediated complement-dependent cytotoxicity. Interestingly, these TKIs displayed varied effects on NK cell-mediated antibody-dependent cytotoxicity and macrophage phagocytic function. While asciminib demonstrated no inhibition of effector cell functions, dasatinib notably suppressed the anti-CD20-mAb-mediated NK cell cytotoxicity and macrophage phagocytosis of BCP-ALL cells. Dasatinib and ponatinib also decreased NK cell degranulation in vitro. Importantly, oral administration of dasatinib, but not asciminib, compromised NK cell activity within patients' blood, determined by ex vivo degranulation assay. Our results indicate that asciminib might be preferred over other TKIs for combination therapy with anti-CD20 mAbs.

4.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163421

RESUMO

Despite the unquestionable success achieved by rituximab-based regimens in the management of diffuse large B-cell lymphoma (DLBCL), the high incidence of relapsed/refractory disease still remains a challenge. The widespread clinical use of chemo-immunotherapy demonstrated that it invariably leads to the induction of resistance; however, the molecular mechanisms underlying this phenomenon remain unclear. Rituximab-mediated therapeutic effect primarily relies on complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity, and their outcome is often compromised following the development of resistance. Factors involved include inherent genetic characteristics and rituximab-induced changes in effectors cells, the role of ligand/receptor interactions between target and effector cells, and the tumor microenvironment. This review focuses on summarizing the emerging advances in the understanding of the molecular basis responsible for the resistance induced by various forms of immunotherapy used in DLBCL. We outline available models of resistance and delineate solutions that may improve the efficacy of standard therapeutic protocols, which might be essential for the rational design of novel therapeutic regimens.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B/genética , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Rituximab/farmacologia , Rituximab/uso terapêutico , Microambiente Tumoral
5.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333768

RESUMO

CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos B/metabolismo , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Linfoma de Células B/imunologia , Tetraspaninas/imunologia , Tetraspaninas/metabolismo , Linfócitos B/imunologia , Linfócitos B/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo
7.
Blood ; 130(14): 1628-1638, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28830887

RESUMO

Downregulation of CD20, a molecular target for monoclonal antibodies (mAbs), is a clinical problem leading to decreased efficacy of anti-CD20-based therapeutic regimens. The epigenetic modulation of CD20 coding gene (MS4A1) has been proposed as a mechanism for the reduced therapeutic efficacy of anti-CD20 antibodies and confirmed with nonselective histone deacetylase inhibitors (HDACis). Because the use of pan-HDACis is associated with substantial adverse effects, the identification of particular HDAC isoforms involved in CD20 regulation seems to be of paramount importance. In this study, we demonstrate for the first time the role of HDAC6 in the regulation of CD20 levels. We show that inhibition of HDAC6 activity significantly increases CD20 levels in established B-cell tumor cell lines and primary malignant cells. Using pharmacologic and genetic approaches, we confirm that HDAC6 inhibition augments in vitro efficacy of anti-CD20 mAbs and improves survival of mice treated with rituximab. Mechanistically, we demonstrate that HDAC6 influences synthesis of CD20 protein independently of the regulation of MS4A1 transcription. We further demonstrate that translation of CD20 mRNA is significantly enhanced after HDAC6 inhibition, as shown by the increase of CD20 mRNA within the polysomal fraction, indicating a new role of HDAC6 in the posttranscriptional mechanism of CD20 regulation. Collectively, our findings suggest HDAC6 inhibition is a rational therapeutic strategy to be implemented in combination therapies with anti-CD20 monoclonal antibodies and open up novel avenues for the clinical use of HDAC6 inhibitors.


Assuntos
Antígenos CD20/genética , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Rituximab/farmacologia , Animais , Antígenos CD20/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/patologia , Camundongos Endogâmicos BALB C , Camundongos SCID , RNA Mensageiro/genética , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
8.
Immunology ; 146(1): 173-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094816

RESUMO

Natural killer (NK) cells are considered critical components of the innate and adaptive immune responses. Deficiencies in NK cell activity are common, such as those that occur in cancer patients, and they can be responsible for dysfunctional immune surveillance. Persistent oxidative stress is intrinsic to many malignant tumours, and numerous studies have focused on the effects of reactive oxygen species on the anti-tumour activity of NK cells. Indeed, investigations in animal models have suggested that one of the most important thiol-dependent antioxidant enzymes, peroxiredoxin 1 (PRDX1), is essential for NK cell function. In this work, our analysis of the transcriptomic expression pattern of antioxidant enzymes in human NK cells has identified PRDX1 as the most prominently induced transcript out of the 18 transcripts evaluated in activated NK cells. The change in PRDX1 expression was followed by increased expression of two other enzymes from the PRDX-related antioxidant chain: thioredoxin and thioredoxin reductase. To study the role of thiol-dependent antioxidants in more detail, we applied a novel compound, adenanthin, to induce an abrupt dysfunction of the PRDX-related antioxidant chain in NK cells. In human primary NK cells, we observed profound alterations in spontaneous and antibody-dependent NK cell cytotoxicity against cancer cells, impaired degranulation, and a decreased expression of activation markers under these conditions. Collectively, our study pinpoints the unique role for the antioxidant activity of the PRDX-related enzymatic chain in human NK cell functions. Further understanding this phenomenon will prospectively lead to fine-tuning of the novel NK-targeted therapeutic approaches to human disease.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Inibidores Enzimáticos/farmacologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Peroxirredoxinas/antagonistas & inibidores , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antioxidantes , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Glutationa/análise , Humanos , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/biossíntese , Tiorredoxinas/biossíntese
9.
Blood Cells Mol Dis ; 55(3): 255-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26227856

RESUMO

B-cell receptor (BCR) signaling pathway plays a central role in B-lymphocyte development and initiation of humoral immunity. Recently, BCR signaling pathway has been shown as a major driver in the pathogenesis of B-cell malignancies. As a result, a vast array of BCR-associated kinases has emerged as rational therapeutic targets changing treatment paradigms in B cell malignancies. Based on high efficacy in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR signaling pathway. Here, we describe the essential components of BCR signaling, their function in normal and pathogenic signaling and molecular effects of their inhibition in vitro and in vivo.


Assuntos
Leucemia Linfoide/etiologia , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Leucemia Linfoide/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
10.
Hemasphere ; 8(3): e56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486859

RESUMO

Breakpoint cluster region-Abelson (BCR::ABL1) gene fusion is an essential oncogene in both chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL). While tyrosine kinase inhibitors (TKIs) are effective in up to 95% of CML patients, 50% of Ph+ B-ALL cases do not respond to treatment or relapse. This calls for new therapeutic approaches for Ph+ B-ALL. Previous studies have shown that inhibitors of the thioredoxin (TXN) system exert antileukemic activity against B-ALL cells, particularly in combination with other drugs. Here, we present that peroxiredoxin-1 (PRDX1), one of the enzymes of the TXN system, is upregulated in Ph+ lymphoid as compared to Ph+ myeloid cells. PRDX1 knockout negatively affects the viability of Ph+ B-ALL cells and sensitizes them to TKIs. Analysis of global gene expression changes in imatinib-treated, PRDX1-deficient cells revealed that the nonhomologous end-joining (NHEJ) DNA repair is a novel vulnerability of Ph+ B-ALL cells. Accordingly, PRDX1-deficient Ph+ B-ALL cells were susceptible to NHEJ inhibitors. Finally, we demonstrated the potent efficacy of a novel combination of TKIs, TXN inhibitors, and NHEJ inhibitors against Ph+ B-ALL cell lines and primary cells, which can be further investigated as a potential therapeutic approach for the treatment of Ph+ B-ALL.

11.
Oncoimmunology ; 13(1): 2362454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846084

RESUMO

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Assuntos
Antígenos CD20 , Imunoterapia , Linfoma de Células B , Rituximab , Tetraspaninas , Humanos , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Antígenos CD20/genética , Rituximab/farmacologia , Rituximab/uso terapêutico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Linhagem Celular Tumoral , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/genética , Linfoma de Células B/tratamento farmacológico , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Regulação Neoplásica da Expressão Gênica
12.
J Biol Chem ; 287(38): 31983-93, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22843692

RESUMO

Anti-CD20 monoclonal antibodies (mAbs) are successfully used in the management of non-Hodgkin lymphomas and chronic lymphocytic leukemia. We have reported previously that statins induce conformational changes in CD20 molecules and impair rituximab-mediated complement-dependent cytotoxicity. Here we investigated in more detail the influence of farnesyltransferase inhibitors (FTIs) on CD20 expression and antitumor activity of anti-CD20 mAbs. Among all FTIs studied, L-744,832 had the most significant influence on CD20 levels. It significantly increased rituximab-mediated complement-dependent cytotoxicity against primary tumor cells isolated from patients with non-Hodgkin lymphomas or chronic lymphocytic leukemia and increased CD20 expression in the majority of primary lymphoma/leukemia cells. Incubation of Raji cells with L-744,832 led to up-regulation of CD20 at mRNA and protein levels. Chromatin immunoprecipitation assay revealed that inhibition of farnesyltransferase activity was associated with increased binding of PU.1 and Oct-2 to the CD20 promoter sequences. These studies indicate that CD20 expression can be modulated by FTIs. The combination of FTIs with anti-CD20 mAbs is a promising therapeutic approach, and its efficacy should be examined in patients with B-cell tumors.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD20/biossíntese , Proteínas do Sistema Complemento/química , Dimetilaliltranstransferase/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Linfoma de Células B/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Regiões Promotoras Genéticas
13.
Blood ; 115(18): 3745-55, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20200358

RESUMO

Unresponsiveness to rituximab treatment develops in many patients prompting elucidation of underlying molecular pathways. It was recently observed that rituximab-resistant lymphoma cells exhibit up-regulation of components of the ubiquitin-proteasome system (UPS). Therefore, we investigated in more detail the role of this system in the regulation of CD20 levels and the influence of proteasome inhibitors on rituximab-mediated complement-dependent cytotoxicity (R-CDC). We observed that incubation of Raji cells with rituximab leads to increased levels of ubiquitinated CD20. However, inhibition of the UPS was not associated with up-regulation of surface CD20 levels, although it significantly increased its ubiquitination. Short-term (24 hours) incubation of Raji cells with 10 or 20 nM bortezomib did not change surface CD20 levels, but sensitized CD20(+) lymphoma cells to R-CDC. Prolonged (48 hours) incubation with 20 nM bortezomib, or incubation with 50 nM bortezomib for 24 hours led to a significant decrease in surface CD20 levels as well as R-CDC. These effects were partly reversed by bafilomycin A1, an inhibitor of lysosomal/autophagosomal pathway of protein degradation. These studies indicate that CD20 levels are regulated by 2 proteolytic systems and that the use of proteasome inhibitors may be associated with unexpected negative influence on R-CDC.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD20/metabolismo , Antineoplásicos/farmacologia , Ácidos Borônicos/uso terapêutico , Citotoxicidade Imunológica/imunologia , Linfoma de Células B/tratamento farmacológico , Inibidores de Proteases/farmacologia , Pirazinas/uso terapêutico , Anticorpos Monoclonais Murinos , Antígenos CD20/genética , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Biotinilação , Western Blotting , Bortezomib , Células Cultivadas , Citometria de Fluxo , Humanos , Imunoprecipitação , Linfoma de Células B/imunologia , Inibidores de Proteassoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rituximab
14.
Cancers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892880

RESUMO

Immune evasion is currently considered one of the most prominent hallmarks of cancer [...].

15.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612228

RESUMO

Despite the high incidence of diffuse large B-cell lymphoma (DLBCL), its management constitutes an ongoing challenge. The most common DLBCL variants include activated B-cell (ABC) and germinal center B-cell-like (GCB) subtypes including DLBCL with MYC and BCL2/BCL6 rearrangements which vary among each other with sensitivity to standard rituximab (RTX)-based chemoimmunotherapy regimens and lead to distinct clinical outcomes. However, as first line therapies lead to resistance/relapse (r/r) in about half of treated patients, there is an unmet clinical need to identify novel therapeutic strategies tailored for these patients. In particular, immunotherapy constitutes an attractive option largely explored in preclinical and clinical studies. Patient-derived cell lines that model primary tumor are indispensable tools that facilitate preclinical research. The current review provides an overview of available DLBCL cell line models and their utility in designing novel immunotherapeutic strategies.

16.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078921

RESUMO

BACKGROUND: Immune checkpoint inhibitors and chimeric antigen receptor (CAR)-based therapies have transformed cancer treatment. Recently, combining these approaches into a strategy of PD-L1-targeted CAR has been proposed to target PD-L1high tumors. Our study provides new information on the efficacy of such an approach against PD-L1low targets. METHODS: New atezolizumab-based PD-L1-targeted CAR was generated and introduced into T, NK, or NK-92 cells. Breast cancer MDA-MB-231 and MCF-7 cell lines or non-malignant cells (HEK293T, HMEC, MCF-10A, or BM-MSC) were used as targets to assess the reactivity or cytotoxic activity of the PD-L1-CAR-bearing immune effector cells. Stimulation with IFNγ or with supernatants from activated CAR T cells were used to induce upregulation of PD-L1 molecule expression on the target cells. HER2-CAR T cells were used for combination with PD-L1-CAR T cells against MCF-7 cells. RESULTS: PD-L1-CAR effector cells responded vigorously with degranulation and cytokine production to PD-L1high MDA-MB-231 cells, but not to PD-L1low MCF-7 cells. However, in long-term killing assays, both MDA-MB-231 and MCF-7 cells were eliminated by the PD-L1-CAR cells, although with a delay in the case of PD-L1low MCF-7 cells. Notably, the coculture of MCF-7 cells with activated PD-L1-CAR cells led to bystander induction of PD-L1 expression on MCF-7 cells and to the unique self-amplifying effect of the PD-L1-CAR cells. Accordingly, PD-L1-CAR T cells were active not only against MDA-MD-231 and MCF-7-PD-L1 but also against MCF-7-pLVX cells in tumor xenograft models. Importantly, we have also observed potent cytotoxic effects of PD-L1-CAR cells against non-malignant MCF-10A, HMEC, and BM-MSC cells, but not against HEK293T cells that initially did not express PD-L1 and were unresponsive to the stimulation . Finally, we have observed that HER-2-CAR T cells stimulate PD-L1 expression on MCF-7 cells and therefore accelerate the functionality of PD-L1-CAR T cells when used in combination. CONCLUSIONS: In summary, our studies show that CAR-effector cells trigger the expression of PD-L1 on target cells, which in case of PD-L1-CAR results in the unique self-amplification phenomenon. This self-amplifying effect could be responsible for the enhanced cytotoxicity of PD-L1-CAR T cells against both malignant and non-malignant cells and implies extensive caution in introducing PD-L1-CAR strategy into clinical studies.


Assuntos
Neoplasias da Mama/terapia , Citotoxicidade Imunológica , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígeno B7-H1/análise , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Camundongos , Receptor ErbB-2/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncogene ; 41(11): 1600-1609, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091682

RESUMO

The prognosis for B-cell precursor acute lymphoblastic leukemia patients with Mixed-Lineage Leukemia (MLL) gene rearrangements (MLLr BCP-ALL) is still extremely poor. Inhibition of anti-apoptotic protein BCL-2 with venetoclax emerged as a promising strategy for this subtype of BCP-ALL, however, lack of sufficient responses in preclinical models and the possibility of developing resistance exclude using venetoclax as monotherapy. Herein, we aimed to uncover potential mechanisms responsible for limited venetoclax activity in MLLr BCP-ALL and to identify drugs that could be used in combination therapy. Using RNA-seq, we observed that long-term exposure to venetoclax in vivo in a patient-derived xenograft model leads to downregulation of several tumor protein 53 (TP53)-related genes. Interestingly, auranofin, a thioredoxin reductase inhibitor, sensitized MLLr BCP-ALL to venetoclax in various in vitro and in vivo models, independently of the p53 pathway functionality. Synergistic activity of these drugs resulted from auranofin-mediated upregulation of NOXA pro-apoptotic protein and potent induction of apoptotic cell death. More specifically, we observed that auranofin orchestrates upregulation of the NOXA-encoding gene Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1) associated with chromatin remodeling and increased transcriptional accessibility. Altogether, these results present an efficacious drug combination that could be considered for the treatment of MLLr BCP-ALL patients, including those with TP53 mutations.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Sulfonamidas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Cancer Immunol Res ; 10(2): 228-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853030

RESUMO

Oxidative stress, caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses, is one of the characteristic features of cancer. Here, we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo, when compared with blood or normal subcutaneous fluid. Therefore, we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells, and by comparing T, B, and NK cells' sensitivities to redox stress and their antioxidant capacities, we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However, the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore, we genetically modified NK cells to stably overexpress PRDX1, which led to increased survival and NK cell activity in redox stress conditions. Finally, we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide, at concentrations detected in the TME, suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors.


Assuntos
Antioxidantes , Neoplasias da Mama , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Feminino , Peróxido de Hidrogênio/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais , Camundongos , Estresse Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Microambiente Tumoral
19.
Am J Pathol ; 176(6): 2658-68, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20519734

RESUMO

Recent case reports provided alarming signals that treatment with bortezomib might be associated with cardiac events. In all reported cases, patients experiencing cardiac problems were previously or concomitantly treated with other chemotherapeutics including cardiotoxic anthracyclines. Therefore, it is difficult to distinguish which components of the therapeutic regimens contribute to cardiotoxicity. Here, we addressed the influence of bortezomib on cardiac function in rats that were not treated with other drugs. Rats were treated with bortezomib at a dose of 0.2 mg/kg thrice weekly. Echocardiography, histopathology, and electron microscopy were used to evaluate cardiac function and structural changes. Respiration of the rat heart mitochondria was measured polarographically. Cell culture experiments were used to determine the influence of bortezomib on cardiomyocyte survival, contractility, Ca(2+) fluxes, induction of endoplasmic reticulum stress, and autophagy. Our findings indicate that bortezomib treatment leads to left ventricular contractile dysfunction manifested by a significant drop in left ventricle ejection fraction. Dramatic ultrastructural abnormalities of cardiomyocytes, especially within mitochondria, were accompanied by decreased ATP synthesis and decreased cardiomyocyte contractility. Monitoring of cardiac function in bortezomib-treated patients should be implemented to evaluate how frequently cardiotoxicity develops especially in patients with pre-existing cardiac conditions, as well as when using additional cardiotoxic drugs.


Assuntos
Antineoplásicos/toxicidade , Ácidos Borônicos/toxicidade , Cardiopatias/induzido quimicamente , Pirazinas/toxicidade , Animais , Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Ecocardiografia , Feminino , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/toxicidade , Pirazinas/farmacologia , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/induzido quimicamente
20.
Cells ; 10(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203935

RESUMO

Despite the introduction of a plethora of different anti-neoplastic approaches including standard chemotherapy, molecularly targeted small-molecule inhibitors, monoclonal antibodies, and finally hematopoietic stem cell transplantation (HSCT), there is still a need for novel therapeutic options with the potential to cure hematological malignancies. Although nowadays HSCT already offers a curative effect, its implementation is largely limited by the age and frailty of the patient. Moreover, its efficacy in combating the malignancy with graft-versus-tumor effect frequently coexists with undesirable graft-versus-host disease (GvHD). Therefore, it seems that cell-based adoptive immunotherapies may constitute optimal strategies to be successfully incorporated into the standard therapeutic protocols. Thus, modern cell-based immunotherapy may finally represent the long-awaited "magic bullet" against cancer. However, enhancing the safety and efficacy of this treatment regimen still presents many challenges. In this review, we summarize the up-to-date state of the art concerning the use of CAR-T cells and NK-cell-based immunotherapies in hemato-oncology, identify possible obstacles, and delineate further perspectives.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico , Anticorpos Monoclonais/imunologia , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/tendências , Humanos , Imunoterapia/métodos , Neoplasias/etiologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa