Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biochemistry ; 61(9): 752-766, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438971

RESUMO

The G-protein-coupled receptor BT-R1 in the moth Manduca sexta represents a class of single-membrane-spanning α-helical proteins within the cadherin family that regulate intercellular adhesion and contribute to important signaling activities that control cellular homeostasis. The Cry1A toxins, Cry1Aa, Cry1Ab, and Cry1Ac, produced by Bacillus thuringiensis bind BT-R1 very tightly (Kd = 1.1 nM) and trigger a Mg2+-dependent signaling pathway that involves the stimulation of G-protein α-subunit, which subsequently launches a coordinated signaling cascade, resulting in insect death. The three Cry1A toxins compete for the same binding site on BT-R1, and the pattern of inhibition of insecticidal activity against M. sexta is strikingly similar for all three toxins. The binding domain is localized in the 12th cadherin repeat (EC12: Asp1349 to Arg1460, 1349DR1460) in BT-R1 and to various truncation fragments derived therefrom. Fine mapping of EC12 revealed that the smallest fragment capable of binding is a highly conserved 94-amino acid polypeptide bounded by Ile1363 and Ser1456 (1363IS1456), designated as the toxin-binding site (TBS). Logistical regression analysis revealed that binding of an EC12 truncation fragment containing the TBS is antagonistic to each of the Cry1A toxins and completely inhibits the insecticidal activity of all three. Elucidation of the EC12 motif of the TBS by X-ray crystallography at a 1.9 Å resolution combined with results of competitive binding analyses, live cell experiments, and whole insect bioassays substantiate the exclusive involvement of BT-R1 in initiating insect cell death and demonstrate that the natural receptor BT-R1 contains a single TBS.


Assuntos
Bacillus thuringiensis , Inseticidas , Manduca , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Sítios de Ligação , Caderinas/metabolismo , Endotoxinas , Proteínas Hemolisinas/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Larva/metabolismo , Manduca/metabolismo , Receptores de Superfície Celular/química , Receptores Acoplados a Proteínas G/metabolismo
2.
J Biol Chem ; 297(6): 101314, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715128

RESUMO

Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.


Assuntos
Cobre/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Chaperonas Moleculares/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Ligação Proteica
3.
J Biol Chem ; 294(6): 1956-1966, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30530491

RESUMO

Copper (Cu) is essential for the survival of aerobic organisms through its interaction with molecular oxygen (O2). However, Cu's chemical properties also make it toxic, requiring specific cellular mechanisms for Cu uptake and handling, mediated by Cu chaperones. CCS1, the budding yeast (S. cerevisiae) Cu chaperone for Cu-zinc (Zn) superoxide dismutase (SOD1) activates by directly promoting both Cu delivery and disulfide formation in SOD1. The complete mechanistic details of this transaction along with recently proposed molecular chaperone-like functions for CCS1 remain undefined. Here, we present combined structural, spectroscopic, kinetic, and thermodynamic data that suggest a multifunctional chaperoning role(s) for CCS1 during SOD1 activation. We observed that CCS1 preferentially binds a completely immature form of SOD1 and that the SOD1·CCS1 interaction promotes high-affinity Zn(II) binding in SOD1. Conserved aromatic residues within the CCS1 C-terminal domain are integral in these processes. Previously, we have shown that CCS1 delivers Cu(I) to an entry site at the SOD1·CCS1 interface upon binding. We show here that Cu(I) is transferred from CCS1 to the entry site and then to the SOD1 active site by a thermodynamically driven affinity gradient. We also noted that efficient transfer from the entry site to the active site is entirely dependent upon the oxidation of the conserved intrasubunit disulfide bond in SOD1. Our results herein provide a solid foundation for proposing a complete molecular mechanism for CCS1 activity and reclassification as a first-of-its-kind "dual chaperone."


Assuntos
Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/química , Superóxido Dismutase-1/metabolismo , Domínio Catalítico , Dissulfetos/metabolismo , Chaperonas Moleculares/química , Ligação Proteica , Proteínas de Saccharomyces cerevisiae
4.
Molecules ; 25(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121118

RESUMO

Zinc (II) ions (hereafter simplified as zinc) are important for the structural and functional activity of many proteins. For Cu, Zn superoxide dismutase (Sod1), zinc stabilizes the native structure of each Sod1 monomer, promotes homo-dimerization and plays an important role in activity by "softening" the active site so that copper cycling between Cu(I) and Cu(II) can rapidly occur. Previously, we have reported that binding of Sod1 by its copper chaperone (Ccs) stabilizes a conformation of Sod1 that promotes site-specific high-affinity zinc binding. While there are a multitude of Sod1 mutations linked to the familial form of amyotrophic lateral sclerosis (fALS), characterizations by multiple research groups have been unable to realize strong commonalities among mutants. Here, we examine a set of fALS-linked Sod1 mutations that have been well-characterized and are known to possess variation in their biophysical characteristics. The zinc affinities of these mutants are evaluated here for the first time and then compared with the previously established value for wild-type Sod1 zinc affinity. Ccs does not have the same ability to promote zinc binding to these mutants as it does for the wild-type version of Sod1. Our data provides a deeper look into how (non)productive Sod1 maturation by Ccs may link a diverse set of fALS-Sod1 mutations.


Assuntos
Esclerose Lateral Amiotrófica , Chaperonas Moleculares/química , Mutação , Superóxido Dismutase-1/química , Zinco/química , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo
5.
Biometals ; 32(4): 695-705, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31292775

RESUMO

Copper-zinc superoxide dismutase (Sod1) is a critical antioxidant enzyme that rids the cell of reactive oxygen through the redox cycling of a catalytic copper ion provided by its copper chaperone (Ccs). Ccs must first acquire this copper ion, directly or indirectly, from the influx copper transporter, Ctr1. The three proteins of this transport pathway ensure careful trafficking of copper ions from cell entry to target delivery, but the intricacies remain undefined. Biochemical examination of each step in the pathway determined that the activation of the target (Sod1) regulates the Ccs·Ctr1 interaction. Ccs stably interacts with the cytosolic C-terminal tail of Ctr1 (Ctr1c) in a copper-dependent manner. This interaction becomes tripartite upon the addition of an engineered immature form of Sod1 creating a stable Cu(I)-Ctr1c·Ccs·Sod1 heterotrimer in solution. This heterotrimer can also be made by the addition of a preformed Sod1·Ccs heterodimer to Cu(I)-Ctr1c, suggestive of multiple routes to the same destination. Only complete Sod1 activation (i.e. active site copper delivery and intra-subunit disulfide bond formation) breaks the Sod1·Ccs·Ctr1c complex. The results provide a new and extended view of the Sod1 activation pathway(s) originating at cellular copper import.


Assuntos
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Superóxido Dismutase-1/metabolismo , Cobre/química , Transportador de Cobre 1/química , Ligação Proteica , Superóxido Dismutase-1/química
6.
J Biol Chem ; 292(29): 12025-12040, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28533431

RESUMO

Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment.


Assuntos
Cobre/metabolismo , Cistina/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cisteína/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Humanos , Ligantes , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/química , Superóxido Dismutase/genética
7.
Bioconjug Chem ; 28(9): 2277-2283, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28787574

RESUMO

Proteinaceous nanomaterials and, in particular, virus-like particles (VLPs) have emerged as robust and uniform platforms that are seeing wider use in biomedical research. However, there are a limited number of bioconjugation reactions for functionalizing the capsids, and very few of those involve functionalization across the supramolecular quaternary structure of protein assemblies. In this work, we exploit the recently described dibromomaleimide moiety as part of a bioconjugation strategy on VLP Qß to break and rebridge the exposed and structurally important disulfides in good yields. Not only was the stability of the quaternary structure retained after the reaction, but the newly functionalized particles also became brightly fluorescent and could be tracked in vitro using a commercially available filter set. Consequently, we show that this highly efficient bioconjugation reaction not only introduces a new functional handle "between" the disulfides of VLPs without compromising their thermal stability but also can be used to create a fluorescent probe.


Assuntos
Allolevivirus/química , Capsídeo/química , Dissulfetos/química , Corantes Fluorescentes/química , Maleimidas/química , Nanoestruturas/química , Animais , Halogenação , Camundongos , Modelos Moleculares , Oxirredução , Células RAW 264.7
8.
Proc Natl Acad Sci U S A ; 111(1): 197-201, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344300

RESUMO

ALS is a terminal disease of motor neurons that is characterized by accumulation of proteinaceous deposits in affected cells. Pathological deposition of mutated Cu/Zn superoxide dismutase (SOD1) accounts for ∼20% of the familial ALS (fALS) cases. However, understanding the molecular link between mutation and disease has been difficult, given that more than 140 different SOD1 mutants have been observed in fALS patients. In addition, the molecular origin of sporadic ALS (sALS) is unclear. By dissecting the amino acid sequence of SOD1, we identified four short segments with a high propensity for amyloid fibril formation. We find that fALS mutations in these segments do not reduce their propensity to form fibrils. The atomic structures of two fibril-forming segments from the C terminus, (101)DSVISLS(107) and (147)GVIGIAQ(153), reveal tightly packed ß-sheets with steric zipper interfaces characteristic of the amyloid state. Based on these structures, we conclude that both C-terminal segments are likely to form aggregates if available for interaction. Proline substitutions in (101)DSVISLS(107) and (147)GVIGIAQ(153) impaired nucleation and fibril growth of full-length protein, confirming that these segments participate in aggregate formation. Our hypothesis is that improper protein maturation and incompletely folded states that render these aggregation-prone segments available for interaction offer a common molecular pathway for sALS and fALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase/metabolismo , Algoritmos , Sequência de Aminoácidos , Simulação por Computador , Humanos , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1 , Fatores de Tempo
9.
Nucleic Acids Res ; 41(7): 4026-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435226

RESUMO

The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein-protein interactions. To gain a better understanding of the scope of linker histone involvement in protein-protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts. Full-length H1.0 and H1.0 lacking its C-terminal domain (CTD) were used for protein pull-downs. A total of 107 candidate H1.0 binding proteins were identified by LC-MS/MS. About one-third of the H1.0-dependent interactions were mediated by the CTD, and two-thirds by the N-terminal domain-globular domain fragment. Many of the proteins pulled down by H1.0 were core splicing factors. Another group of H1-binding proteins functions in rRNA biogenesis. H1.0 also pulled down numerous ribosomal proteins and proteins involved in cellular transport. Strikingly, nearly all of the H1.0-binding proteins are found in the nucleolus. Quantitative biophysical studies with recombinant proteins confirmed that H1.0 directly binds to FACT and the splicing factors SF2/ASF and U2AF65. Our results demonstrate that H1.0 interacts with an extensive network of proteins that function in RNA metabolism in the nucleolus, and suggest that a new paradigm for linker histone action is in order.


Assuntos
Nucléolo Celular/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Histonas/química , Humanos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteômica
11.
Nucleic Acids Res ; 40(20): 10139-49, 2012 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-22941638

RESUMO

Following acetylation, newly synthesized H3-H4 is directly transferred from the histone chaperone anti-silencing factor 1 (Asf1) to chromatin assembly factor 1 (CAF-1), another histone chaperone that is critical for the deposition of H3-H4 onto replicating DNA. However, it is unknown how CAF-1 binds and delivers H3-H4 to the DNA. Here, we show that CAF-1 binds recombinant H3-H4 with 10- to 20-fold higher affinity than H2A-H2B in vitro, and H3K56Ac increases the binding affinity of CAF-1 toward H3-H4 2-fold. These results provide a quantitative thermodynamic explanation for the specific H3-H4 histone chaperone activity of CAF-1. Surprisingly, H3-H4 exists as a dimer rather than as a canonical tetramer at mid-to-low nanomolar concentrations. A single CAF-1 molecule binds a cross-linked (H3-H4)2 tetramer, or two H3-H4 dimers that contain mutations at the (H3-H4)2 tetramerization interface. These results suggest that CAF-1 binds to two H3-H4 dimers in a manner that promotes formation of a (H3-H4)2 tetramer. Consistent with this idea, we confirm that CAF-1 synchronously binds two H3-H4 dimers derived from two different histone genes in vivo. Together, the data illustrate a clear mechanism for CAF-1-associated H3-H4 chaperone activity in the context of de novo nucleosome (re)assembly following DNA replication.


Assuntos
Fator 1 de Modelagem da Cromatina/metabolismo , Histonas/metabolismo , Acetilação , Animais , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Histonas/genética , Ligação Proteica , Multimerização Proteica , Deleção de Sequência , Termodinâmica , Xenopus laevis , Leveduras/metabolismo
12.
Nucleic Acids Res ; 40(21): 11036-46, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22977180

RESUMO

Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3-H4)(2) over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction.


Assuntos
Proteínas dos Microfilamentos/química , Nucleossomos/metabolismo , Actinas/química , Actinas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
13.
J Biol Chem ; 286(21): 18369-74, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454601

RESUMO

Changes in chromatin architecture induced by epigenetic mechanisms are essential for normal cellular processes such as gene expression, DNA repair, and cellular division. Compact chromatin presents a barrier to these processes and is highly regulated by epigenetic markers binding to components of the nucleosome. Histone modifications directly influence chromatin dynamics and facilitate recruitment of additional factors such as chromatin remodelers and histone chaperones. One member of this last class of factors, FACT (facilitates chromatin transcription), is categorized as a histone chaperone critical for nucleosome reorganization during replication, transcription, and DNA repair. Significant discoveries regarding the role of histone chaperones and specifically FACT have come over the past dozen years from a number of independent laboratories. Here, we review the structural and biophysical basis for FACT-mediated nucleosome reorganization and discuss up-to-date models for FACT function.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Humanos , Relação Estrutura-Atividade , Transcrição Gênica/fisiologia
14.
J Biol Chem ; 286(48): 41883-41892, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21969370

RESUMO

In eukaryotic cells, DNA maintenance requires ordered disassembly and re-assembly of chromatin templates. These processes are highly regulated and require extrinsic factors such as chromatin remodelers and histone chaperones. The histone chaperone FACT (facilitates chromatin transcription) is a large heterodimeric complex with roles in transcription, replication, and repair. FACT promotes and subsequently restricts access to DNA as a result of dynamic nucleosome reorganization. However, until now, there lacked a truly quantitative assessment of the critical contacts mediating FACT function. Here, we demonstrate that FACT binds histones, DNA, and intact nucleosomes at nanomolar concentrations. We also determine roles for the histone tails in free histone and nucleosome binding by FACT. Furthermore, we propose that the conserved acidic C-terminal domain of the FACT subunit Spt16 actively displaces nucleosomal DNA to provide access to the histone octamer. Experiments with tri-nucleosome arrays indicate a possible mode for FACT binding within chromatin. Together, the data reveal that specific FACT subunits synchronize interactions with various target sites on individual nucleosomes to generate a high affinity binding event and promote reorganization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Histonas/metabolismo , Humanos , Complexos Multiproteicos/genética , Nucleossomos/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 106(19): 7774-9, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19416874

RESUMO

Transgenic mice that model familial (f)ALS, caused by mutations in superoxide dismutase (SOD)1, develop paralysis with pathology that includes the accumulation of aggregated forms of the mutant protein. Using a highly sensitive detergent extraction assay, we traced the appearance and abundance of detergent-insoluble and disulfide cross-linked aggregates of SOD1 throughout the disease course of SOD1-fALS mice (G93A, G37R, and H46R/H48Q). We demonstrate that the accumulation of disulfide cross-linked, detergent-insoluble, aggregates of mutant SOD1 occurs primarily in the later stages of the disease, concurrent with the appearance of rapidly progressing symptoms. We find no evidence for a model in which aberrant intermolecular disulfide bonding has an important role in promoting the aggregation of mutant SOD1, instead, such cross-linking appears to be a secondary event. Also, using both cell culture and mouse models, we find that mutant protein lacking the normal intramolecular disulfide bond is a major component of the insoluble SOD1 aggregates. Overall, our findings suggest a model in which soluble forms of mutant SOD1 initiate disease with larger aggregates implicated only in rapidly progressing events in the final stages of disease. Within the final stages of disease, abnormalities in the oxidation of a normal intramolecular disulfide bond in mutant SOD1 facilitate the aggregation of mutant protein.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Animais , Modelos Animais de Doenças , Dissulfetos , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Estresse Oxidativo/genética , Solubilidade , Superóxido Dismutase-1
16.
Biochemistry ; 49(27): 5714-25, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20515040

RESUMO

Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we present structures of the pathogenic SOD1 variants D124V and H80R, both of which demonstrate compromised zinc-binding sites. The disruption of the zinc-binding sites in H80R SOD1 leads to conformational changes in loop elements, permitting non-native SOD1-SOD1 interactions that mediate the assembly of these proteins into higher-order filamentous arrays. Analytical ultracentrifugation sedimentation velocity experiments indicate that these SOD1 variants are more prone to monomerization than the wild-type enzyme. Although D124V and H80R SOD1 proteins appear to have fully functional copper-binding sites, inductively coupled plasma mass spectrometery (ICP-MS) and anomalous scattering X-ray diffraction analyses reveal that zinc (not copper) occupies the copper-binding sites in these variants. The absence of copper in these proteins, together with the results of covalent thiol modification experiments in yeast strains with and without the gene encoding the copper chaperone for SOD1 (CCS), suggests that CCS may not fully act on newly translated forms of these polypeptides. Overall, these findings lend support to the hypothesis that immature mutant SOD1 species contribute to toxicity in SOD1-linked ALS.


Assuntos
Esclerose Lateral Amiotrófica , Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Superóxido Dismutase , Zinco/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Difração de Raios X , Raios X
17.
Antioxidants (Basel) ; 9(6)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517371

RESUMO

Copper ions (i.e., copper) are a critical part of several cellular processes, but tight regulation of copper levels and trafficking are required to keep the cell protected from this highly reactive transition metal. Cu, Zn superoxide dismutase (Sod1) protects the cell from the accumulation of radical oxygen species by way of the redox cycling activity of copper in its catalytic center. Multiple posttranslational modification events, including copper incorporation, are reliant on the copper chaperone for Sod1 (Ccs). The high-affinity copper uptake protein (Ctr1) is the main entry point of copper into eukaryotic cells and can directly supply copper to Ccs along with other known intracellular chaperones and trafficking molecules. This review explores the routes of copper delivery that are utilized to activate Sod1 and the usefulness and necessity of each.

18.
Nanoscale ; 12(16): 9124-9132, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32292962

RESUMO

The emergence of viral nanotechnology over the preceding two decades has created a number of intellectually captivating possible translational applications; however, the in vitro fate of the viral nanoparticles in cells remains an open question. Herein, we investigate the stability and lifetime of virus-like particle (VLP) Qß-a representative and popular VLP for several applications-following cellular uptake. By exploiting the available functional handles on the viral surface, we have orthogonally installed the known FRET pair, FITC and Rhodamine B, to gain insight of the particle's behavior in vitro. Based on these data, we believe VLPs undergo aggregation in addition to the anticipated proteolysis within a few hours of cellular uptake.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanopartículas/química , Vírus/metabolismo , Animais , Química Click , Cobre/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Maleimidas/química , Camundongos , Microscopia Confocal , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Proteólise , Células RAW 264.7 , Rodaminas/química , Rodaminas/metabolismo , Vírus/efeitos dos fármacos
19.
Biochemistry ; 48(15): 3436-47, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19227972

RESUMO

Over 100 mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two pathogenic SOD1 mutations, His46Arg (H46R) and His48Gln (H48Q), affect residues that act as copper ligands in the wild type enzyme. Transgenic mice expressing a human SOD1 variant containing both mutations develop paralytic disease akin to ALS. Here we show that H46R/H48Q SOD1 possesses multiple characteristics that distinguish it from the wild type. These properties include the following: (1) an ablated copper-binding site, (2) a substantially weakened affinity for zinc, (3) a binding site for a calcium ion, (4) the ability to form stable heterocomplexes with the copper chaperone for SOD1 (CCS), and (5) compromised CCS-mediated oxidation of the intrasubunit disulfide bond in vivo. The results presented here, together with data on pathogenic SOD1 proteins coming from cell culture and transgenic mice, suggest that incomplete posttranslational modification of nascent SOD1 polypeptides via CCS may be a characteristic shared by familial ALS SOD1 mutants, leading to a population of destabilized, off-pathway folding intermediates that are toxic to motor neurons.


Assuntos
Substituição de Aminoácidos/genética , Variação Genética , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Animais , Arginina/genética , Linhagem Celular , Cobre/química , Cristalografia por Raios X , Estabilidade Enzimática/genética , Glutamina/genética , Histidina/genética , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional/genética , Eletricidade Estática , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
20.
Artigo em Inglês | MEDLINE | ID: mdl-29950795

RESUMO

Immature copper-zinc superoxide dismutase (Sod1) is activated by its copper chaperone (Ccs1). Ccs1 delivers a single copper ion and catalyzes oxidation of an intra-subunit disulfide bond within each Sod1 monomer through a mechanistically ambiguous process. Here, we use residue specific fluorescent labeling of immature Sod1 to quantitate the thermodynamics of the Sod1•Ccs1 interaction while determining a more complete view of Ccs1 function. Ccs1 preferentially binds a completely immature form of Sod1 that is metal deficient and disulfide reduced (E, E-Sod1SH). However, binding induces structural changes that promote high-affinity zinc binding by the Ccs1-bound Sod1 molecule. This adds further support to the notion that Ccs1 likely plays dual chaperoning roles during the Sod1 maturation process. Further analysis reveals that in addition to the copper-dependent roles during Sod1 activation, the N- and C-terminal domains of Ccs1 also have synergistic roles in securing both Sod1 recognition and its own active conformation. These results provide new and measurable analyses of the molecular determinants guiding Ccs1-mediated Sod1 activation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa