Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273490

RESUMO

Given the importance of soil for the global carbon cycle, it is essential to understand not only how much carbon soil stores but also how long this carbon persists. Previous studies have shown that the amount and age of soil carbon are strongly affected by the interaction of climate, vegetation, and mineralogy. However, these findings are primarily based on studies from temperate regions and from fine-scale studies, leaving large knowledge gaps for soils from understudied regions such as sub-Saharan Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad scales. Here, we present insights into organic carbon cycling, based on a new broad-scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in moderately weathered soils in seasonal climate zones with poorly crystalline and reactive clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon for periods more similar to those in seasonal climate zones, likely reflecting climatic constraints on weathering, carbon inputs and microbial decomposition. These insights into the timescales of organic carbon persistence in soils of sub-Saharan Africa suggest that a process-oriented grouping of soils based on pedo-climatic conditions may be useful to improve predictions of soil responses to climate change at broader scales.


Assuntos
Carbono , Solo , Solo/química , Minerais , Sequestro de Carbono , África Subsaariana
2.
Ecol Appl ; 29(7): e01973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31306541

RESUMO

In order to understand how the effects of land-use change vary among taxa and environmental contexts, we investigate how three types of land-use change have influenced phylogenetic diversity (PD) and species composition of three functionally distinct communities: plants, small mammals, and large mammals. We found large mammal communities were by far the most heavily impacted by land-use change, with areas of attempted large wildlife exclusion and intense livestock grazing, respectively, containing 164 and 165 million fewer years of evolutionary history than conserved areas (~40% declines). The effects of land-use change on PD varied substantially across taxa, type of land-use change, and, for most groups, also across abiotic conditions. This highlights the need for taxa-specific or multi-taxa evaluations, for managers interested in conserving specific groups or whole communities, respectively. It also suggests that efforts to conserve and restore PD may be most successful if they focus on areas of particular land-use types and abiotic conditions. Importantly, we also describe the substantial species turnover and compositional changes that cannot be detected by alpha diversity metrics, emphasizing that neither PD nor other taxonomic diversity metrics are sufficient proxies for ecological integrity. Finally, our results provide further support for the emerging consensus that conserved landscapes are critical to support intact assemblages of some lineages such as large mammals, but that mosaics of disturbed land-uses, including both agricultural and pastoral land, do provide important habitats for a diverse array of plants and small mammals.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Animais , Filogenia , Plantas
3.
Sci Total Environ ; 837: 155469, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523345

RESUMO

The dynamics of soil organic carbon (SOC) stock is a vital element affecting the climate, and ecological restoration is potentially an effective measure to mitigate climate change by enhancing vegetation and soil carbon stocks and thereby offsetting greenhouse gas emissions. The Grain-for-Green project (GFGP) implemented in Chinese Loess Plateau (LP) since 1999 is one of the largest ecological restoration projects in the world. However, the contributions of ecological restoration and climate change to ecosystem soil carbon sequestration are still unclear. In this study, we improved a soil carbon decomposition framework by optimizing the initial SOC stock based on full spatial simulation of SOC and incorporating the priming effect to investigate the SOC dynamics across the LP GFGP region from 1982 through 2017. Our results indicated that SOC stock in the GFGP region increased by 20.18 Tg C from 1982 through 2017. Most portion (15.83 Tg C) of the SOC increase was accumulated when the GFGP was initiated, with a SOC sink of 16.12 Tg C owing to revegetation restoration and a carbon loss of 0.29 Tg C due to warming during this period. The relationships between SOC and forest canopy height and investigations on the SOC dynamics after afforestation revealed that the accumulation rate of SOC could be as high as 24.68 g C m-2 yr-1 during the 70 years following afforestation, and that SOC could decline thereafter (-8.89 g C m-2 yr-1), which was mainly caused by warming. This study provides a new method for quantifying the contribution of ecological restoration to SOC changes, and also cautions the potential risk of LP SOC loss in the mature forest soil under future warming.


Assuntos
Carbono , Solo , Carbono/análise , Sequestro de Carbono , China , Ecossistema , Grão Comestível/química , Florestas
4.
Sci Rep ; 10(1): 15038, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929116

RESUMO

Farmer-managed natural regeneration (FMNR) is being promoted for restoration beyond its original range in the Sahel. FMNR involves farmers selecting and managing natural regeneration on their fields, while keeping them under the primary function of agricultural production. However, little is known about what regenerates in different contexts, even though this underlies potential restoration impact. Here we assess how human impact, land degradation and dispersal limitation affect structural and functional properties of regeneration across 316 plots in agroforestry parklands of Ghana and Burkina Faso. We found that intensity of land use (grazing and agricultural practices) and dispersal limitation inhibited regeneration, while land degradation did not. Functional composition of regenerating communities shifted towards shorter statured, small-seeded and conservative strategies with intensity of land use. We conclude that the presence of trees of desired species in the vicinity is a precondition for successfully implementing FMNR for restoration, and that regeneration needs to be protected from grazing. Assessment of regeneration potential is imperative for scaling out FMNR and where natural regeneration will be insufficient to achieve restoration targets, FMNR needs to be complemented with tree planting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa