RESUMO
(1) Background: Neospora caninum is a major cause of abortion in cattle and represents a veterinary health problem of great economic significance. In order to identify novel chemotherapeutic agents for the treatment of neosporosis, the Medicines for Malaria Venture (MMV) Malaria Box, a unique collection of anti-malarial compounds, were screened against N. caninum tachyzoites, and the most efficient compounds were characterized in more detail. (2) Methods: A N. caninum beta-galactosidase reporter strain grown in human foreskin fibroblasts was treated with 390 compounds from the MMV Malaria Box. The IC50s of nine compounds were determined, all of which had been previously been shown to be active against another apicomplexan parasite, Theileria annulata. The effects of three of these compounds on the ultrastructure of N. caninum tachyzoites were further investigated by transmission electron microscopy at different timepoints after initiation of drug treatment. (3) Results: Five MMV Malaria Box compounds exhibited promising IC50s below 0.2 µM. The compound with the lowest IC50, namely 25 nM, was MMV665941. This compound and two others, MMV665807 and MMV009085, specifically induced distinct alterations in the tachyzoites. More specifically, aberrant structural changes were first observed in the parasite mitochondrion, and subsequently progressed to other cytoplasmic compartments of the tachyzoites. The pharmacokinetic (PK) data obtained in mice suggest that treatment with MMV665941 could be potentially useful for further in vivo studies. (4) Conclusions: We have identified five novel compounds with promising activities against N. caninum, the effects of three of these compounds were studies by transmission electron microscopy (TEM). Their modes of action are unknown and require further investigation.
Assuntos
Antimaláricos/farmacologia , Neospora/parasitologia , Benzamidas/farmacologia , Fibroblastos/parasitologia , Humanos , Microscopia Eletrônica de Transmissão , Theileria annulata/efeitos dos fármacosRESUMO
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 µM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 µM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 µM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.