RESUMO
BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.
Assuntos
Dióxido de Carbono , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Volume Sanguíneo Cerebral , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , OxigênioRESUMO
Free water fraction (FWF) represents the amount of water per unit volume of brain parenchyma, which is not bound to macromolecules. Its excess in multiple sclerosis (MS) is related to increased tissue loss. The use of mcDESPOT (multicomponent driven single pulse observation of T1 and T2), a 3D imaging method which exploits both the T1 and T2 contrasts, allows FWF to be derived in clinically feasible times. However, this method has not been used to quantify changes of FWF and their potential clinical impact in MS. The aim of this study is to investigate the changes in FWF in MS patients and their relationship with tissue damage and cognition, under the hypothesis that FWF is a proxy of clinically meaningful tissue loss. To this aim, we tested the relationship between FWF, MS lesion burden and information processing speed, evaluated via the Symbol Digit Modalities Test (SDMT). In addition to standard sequences, used for T1- and T2-weighted lesion delineation, the mcDESPOT sequence with 1.7 mm isotropic resolution and a diffusion weighted imaging protocol (b = 0, 1200 s/mm2, 40 diffusion directions) were employed at 3 T. The fractional anisotropy map derived from diffusion data was used to define a subject-specific white matter (WM) atlas. Brain parenchyma segmentation returned masks of gray matter (GM) and WM, and normal-appearing WM (NAWM), in addition to the T1 and T2 lesion masks (T1L and T2L, respectively). Ninety-nine relapsing-remitting MS patients (age = 43.3 ± 9.9 years, disease duration 12.3 ± 7.7 years) were studied, together with twenty-five healthy controls (HC, age = 38.8 ± 11.0 years). FWF was higher in GM and NAWM of MS patients, compared to GM and WM of HC (both p < .001). In MS patients, FWF was the highest in the T1L and GM, followed by T2L and NAWM, respectively. FWF increased significantly with T1L and T2L volume (ρ ranging from 0.40 to 0.58, p < .001). FWF in T2L was strongly related to both T1L volume and the volume ratio T1L/T2L (ρ = 0.73, p < .001). MS patients performed worse than HC in the processing speed test (mean ± SD: 54.1 ± 10.3 for MS, 63.8 ± 10.8 for HC). FWF in GM, T2L, perilesional tissue and NAWM increased with SDMT score reduction (ρ = -0.30, -0.29, -0.33 respectively and r = -.30 for T2L, all with p < .005). A regional analysis, conducted to determine which NAWM regions were of particular importance to explain the relationship between FWF and cognitive impairment, revealed that FWF spatial variance was negatively related to SDMT score in the corpus callosum and the superior longitudinal fasciculus, WM structures known to be associated with cognitive impairment, in addition to the left corticospinal tract, the sagittal stratum, the right anterior limb of internal capsule. In conclusion, we found excess free water in brain parenchyma of MS patients, an alteration that involved not only MS lesions, but also the GM and NAWM, impinging on brain function and negatively associated with cognitive processing speed. We suggest that the FWF metric, derived from noninvasive, rapid MRI acquisitions and bearing good biological interpretability, may prove valuable as an MRI biomarker of tissue damage and associated cognitive impairment in MS.
Assuntos
Encéfalo , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Água , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Tecido Parenquimatoso/diagnóstico por imagem , Tecido Parenquimatoso/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Velocidade de ProcessamentoRESUMO
In preterm (PT) infants, regional cerebral blood flow (CBF) disturbances may predispose to abnormal brain maturation even without overt brain injury. Therefore, it would be informative to determine the spatial distribution of grey matter (GM) CBF in PT and full-term (FT) newborns at term-equivalent age (TEA) and to assess the relationship between the features of the CBF pattern and both prematurity and prematurity-related brain lesions. In this prospective study, we obtained measures of CBF in 66 PT (51 without and 15 with prematurity-related brain lesions) and 38 FT newborns through pseudo-continuous arterial spin labeling (pCASL) MRI acquired at TEA. The pattern of GM CBF was characterized by combining an atlas-based automated segmentation of structural MRI with spatial normalization and hierarchical clustering. The effects of gestational age (GA) at birth and brain injury on the CBF pattern were investigated. We identified 4 physiologically-derived clusters of brain regions that were labeled Fronto-Temporal, Parieto-Occipital, Insular-Deep GM (DGM) and Sensorimotor, from the least to the most perfused. We demonstrated that GM perfusion was associated with GA at birth in the Fronto-Temporal and Sensorimotor clusters, positively and negatively, respectively. Moreover, the presence of periventricular leukomalacia was associated with significantly increased Fronto-Temporal GM perfusion and decreased Insular-DGM perfusion, while the presence of germinal matrix hemorrhage appeared to mildly decrease the Insular-DGM perfusion. Prematurity and prematurity-related brain injury heterogeneously affect brain perfusion. ASL MRI may, therefore, have strong potential as a noninvasive tool for the accurate stratification of individuals at risk of domain-specific impairment.
Assuntos
Lesões Encefálicas , Imageamento por Ressonância Magnética , Lactente , Humanos , Recém-Nascido , Estudos Prospectivos , Marcadores de Spin , Encéfalo/fisiologia , Recém-Nascido Prematuro , Perfusão , Circulação Cerebrovascular/fisiologiaRESUMO
BACKGROUND AND PURPOSE: Reduced cerebral perfusion has been observed in multiple sclerosis (MS) and may contribute to tissue loss both acutely and chronically. Here, we test the hypothesis that hypoperfusion occurs in MS and relates to the presence of irreversible tissue damage. METHODS: In 91 patients with relapsing MS and 26 healthy controls (HC), gray matter (GM) cerebral blood flow (CBF) was assessed using pulsed arterial spin labeling. GM volume, T1 hypointense and T2 hyperintense lesion volumes (T1LV and T2LV, respectively), and the proportion of T2-hyperintense lesion volume that appears hypointense on T1-weighted magnetic resonance imaging (T1LV/T2LV) were quantified. GM CBF and GM volume were evaluated globally, as well as regionally, using an atlas-based approach. RESULTS: Global GM CBF was lower in patients (56.9 ± 12.3 mL/100 g/min) than in HC (67.7 ± 10.0 mL/100 g/min; p < 0.001), a difference that was widespread across brain regions. Although total GM volume was comparable between groups, significant reductions were observed in a subset of subcortical structures. GM CBF negatively correlated with T1LV (r = -0.43, p = 0.0002) and T1LV/T2LV (r = -0.37, p = 0.0004), but not with T2LV. CONCLUSIONS: GM hypoperfusion occurs in MS and is associated with irreversible white matter damage, thus suggesting that cerebral hypoperfusion may actively contribute and possibly precede neurodegeneration by hampering tissue repair abilities in MS.
Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/complicações , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Substância Branca/patologiaRESUMO
Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.
Assuntos
Ondas Encefálicas/efeitos dos fármacos , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Magnetoencefalografia/métodos , Córtex Motor/efeitos dos fármacos , Propofol/farmacologia , Adulto , Sedação Consciente , Estado de Consciência/efeitos dos fármacos , Estudos Cross-Over , Humanos , Masculino , Movimento/fisiologia , Vigília , Adulto JovemRESUMO
Premature birth affects the developmental trajectory of the brain during a period of intense maturation with possible lifelong consequences. To better understand the effect of prematurity on brain structure and function, we performed blood-oxygen-level dependent (BOLD) and anatomical magnetic resonance imaging (MRI) at 40 weeks of postmenstrual age on 88 newborns with variable gestational age (GA) at birth and no evident radiological alterations. We extracted measures of resting-state functional connectivity and activity in a set of 90 cortical and subcortical brain regions through the evaluation of BOLD correlations between regions and of fractional amplitude of low-frequency fluctuation (fALFF) within regions, respectively. Anatomical information was acquired through the assessment of regional volumes. We performed univariate analyses on each metric to examine the association with GA at birth, the spatial distribution of the effects, and the consistency across metrics. Moreover, a data-driven multivariate analysis (i.e., Machine Learning) framework exploited the high dimensionality of the data to assess the sensitivity of each metric to the effect of premature birth. Prematurity was associated with bidirectional alterations of functional connectivity and regional volume and, to a lesser extent, of fALFF. Notably, the effects of prematurity on functional connectivity were spatially diffuse, mainly within cortical regions, whereas effects on regional volume and fALFF were more focal, involving subcortical structures. While the two analytical approaches delivered consistent results, the multivariate analysis was more sensitive in capturing the complex pattern of prematurity effects. Future studies might apply multivariate frameworks to identify premature infants at risk of a negative neurodevelopmental outcome.
Assuntos
Encéfalo , Conectoma , Recém-Nascido Prematuro , Rede Nervosa , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Análise Multivariada , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologiaRESUMO
Pre-clinical and human neuroimaging research implicates the extended-amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance-use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task-free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter-individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST-CeA intrinsic functional connectivity (iFC) was heritable and further examined co-heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST-CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co-heritability associations with our principal components either across the ICNs or for specific BST-Amygdala iFC. Possible differences in phenotype associations across task-free, task-based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well-established ExtA ICNs.
Assuntos
Núcleo Central da Amígdala/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Núcleos Septais/fisiologia , Adulto , Núcleo Central da Amígdala/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Herança Multifatorial/fisiologia , Rede Nervosa/diagnóstico por imagem , Linhagem , Núcleos Septais/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiologiaRESUMO
In-scanner head motion represents a major confounding factor in functional connectivity studies and it raises particular concerns when motion correlates with the effect of interest. One such instance regards research focused on functional connectivity modulations induced by sustained cognitively demanding tasks. Indeed, cognitive engagement is generally associated with substantially lower in-scanner movement compared with unconstrained, or minimally constrained, conditions. Consequently, the reliability of condition-dependent changes in functional connectivity relies on effective denoising strategies. In this study, we evaluated the ability of common denoising pipelines to minimize and balance residual motion-related artifacts between resting-state and task conditions. Denoising pipelines-including realignment/tissue-based regression, PCA/ICA-based methods (aCompCor and ICA-AROMA, respectively), global signal regression, and censoring of motion-contaminated volumes-were evaluated according to a set of benchmarks designed to assess either residual artifacts or network identifiability. We found a marked heterogeneity in pipeline performance, with many approaches showing a differential efficacy between rest and task conditions. The most effective approaches included aCompCor, optimized to increase the noise prediction power of the extracted confounding signals, and global signal regression, although both strategies performed poorly in mitigating the spurious distance-dependent association between motion and connectivity. Censoring was the only approach that substantially reduced distance-dependent artifacts, yet this came at the great cost of reduced network identifiability. The implications of these findings for best practice in denoising task-based functional connectivity data, and more generally for resting-state data, are discussed.
Assuntos
Cérebro/diagnóstico por imagem , Cérebro/fisiologia , Cognição/fisiologia , Conectoma/métodos , Conectoma/normas , Adulto , Artefatos , Percepção Auditiva/fisiologia , Cérebro/anatomia & histologia , Conjuntos de Dados como Assunto , Movimentos da Cabeça , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Memória de Curto Prazo/fisiologia , Descanso/fisiologiaRESUMO
BACKGROUND: The development of tailored recovery-oriented strategies in multiple sclerosis requires early identification of an individual's potential for functional recovery. OBJECTIVE: To identify predictors of visuomotor performance improvements, a proxy of functional recovery, using a predictive statistical model that combines demographic, clinical and magnetic resonance imaging (MRI) data. METHODS: Right-handed multiple sclerosis patients underwent baseline disability assessment and MRI of the brain structure, function and vascular health. They subsequently undertook 4 weeks of right upper limb visuomotor practice. Changes in performance with practice were our outcome measure. We identified predictors of improvement in a training set of patients using lasso regression; we calculated the best performing model in a validation set and applied this model to a test set. RESULTS: Patients improved their visuomotor performance with practice. Younger age, better visuomotor abilities, less severe disease burden and concurrent use of preventive treatments predicted improvements. Neuroimaging localised outcome-relevant sensory motor regions, the microstructure and activity of which correlated with performance improvements. CONCLUSION: Initial characteristics, including age, disease duration, visuo-spatial abilities, hand dexterity, self-evaluated disease impact and the presence of disease-modifying treatments, can predict functional recovery in individual patients, potentially improving their clinical management and stratification in clinical trials. MRI is a correlate of outcome, potentially supporting individual prognosis.
Assuntos
Esclerose Múltipla , Encéfalo , Mãos , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , NeuroimagemRESUMO
Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.
Assuntos
Metabolômica , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/terapia , Animais , Biomarcadores/metabolismo , Humanos , Metaboloma/fisiologia , Metabolômica/métodos , Esclerose Múltipla/metabolismo , PrognósticoRESUMO
Increasing numbers of 7â¯T (7â¯T) magnetic resonance imaging (MRI) scanners are in research and clinical use. 7â¯T MRI can increase the scanning speed, spatial resolution and contrast-to-noise-ratio of many neuroimaging protocols, but technical challenges in implementation have been addressed in a variety of ways across sites. In order to facilitate multi-centre studies and ensure consistency of findings across sites, it is desirable that 7â¯T MRI sites implement common high-quality neuroimaging protocols that can accommodate different scanner models and software versions. With the installation of several new 7â¯T MRI scanners in the United Kingdom, the UK7T Network was established with an aim to create a set of harmonized structural and functional neuroimaging sequences and protocols. The Network currently includes five sites, which use three different scanner platforms, provided by two different vendors. Here we describe the harmonization of functional and anatomical imaging protocols across the three different scanner models, detailing the necessary changes to pulse sequences and reconstruction methods. The harmonized sequences are fully described, along with implementation details. Example datasets acquired from the same subject on all Network scanners are made available. Based on these data, an evaluation of the harmonization is provided. In addition, the implementation and validation of a common system calibration process is described.
Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/normas , Calibragem , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Humanos , Neuroimagem/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Reino UnidoRESUMO
INTRODUCTION: We present the reliability of ultra-high field T2* MRI at 7T, as part of the UK7T Network's "Travelling Heads" study. T2*-weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and R2* maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. The relaxation parameters of human brain tissue are such that R2* mapping and QSM show particularly strong gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5-3T). We aimed to determine the inter-subject and inter-site reproducibility of QSM and R2* mapping at 7T, in readiness for future multi-site clinical studies. METHODS: Ten healthy volunteers were scanned with harmonised single- and multi-echo T2*-weighted gradient echo pulse sequences. Participants were scanned five times at each "home" site and once at each of four other sites. The five sites had 1× Philips, 2× Siemens Magnetom, and 2× Siemens Terra scanners. QSM and R2* maps were computed with the Multi-Scale Dipole Inversion (MSDI) algorithm (https://github.com/fil-physics/Publication-Code). Results were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually or by the MNI152 standard space. RESULTS AND DISCUSSION: Mean susceptibility (χ) and R2* values agreed broadly with literature values in all ROIs. The inter-site within-subject standard deviation was 0.001-0.005 ppm (χ) and 0.0005-0.001 ms-1 (R2*). For χ this is 2.1-4.8 fold better than 3T reports, and 1.1-3.4 fold better for R2*. The median ICC from within- and cross-site R2* data was 0.98 and 0.91, respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas with large B0 inhomogeneity such as the inferior frontal cortex. Across sites, R2* values were more consistent than QSM in subcortical structures due to differences in B0-shimming. On a between-subject level, our measured χ and R2* cross-site variance is comparable to within-site variance in the literature, suggesting that it is reasonable to pool data across sites using our harmonised protocol. CONCLUSION: The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coefficient of reproducibility for QSM and R2* at 7T compared to previous reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site clinical studies at 7T.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos TestesRESUMO
PURPOSE: Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. METHODS: Density-weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co-registered 1 H T2∗ -weighted images and venous partial volume estimates were calculated by down-sampling the finer spatial resolution venous maps from the T2∗ -weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. RESULTS: Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). CONCLUSION: Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ.
Assuntos
Imageamento por Ressonância Magnética , Sódio , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Substância Cinzenta , HumanosRESUMO
PURPOSE: This study investigates the implications of all degrees of freedom of within-scan patient head motion on patient safety. METHODS: Electromagnetic simulations were performed by displacing and/or rotating a virtual body model inside an 8-channel transmit array to simulate 6 degrees of freedom of motion. Rotations of up to 20° and displacements of up to 20 mm including off-axis axial/coronal translations were investigated, yielding 104 head positions. Quadrature excitation, RF shimming, and multi-spoke parallel-transmit excitation pulses were designed for axial slice-selection at 7T, for seven slices across the head. Variation of whole-head specific absorption rate (SAR) and 10-g averaged local SAR of the designed pulses, as well as the change in the maximum eigenvalue (worst-case pulse) were investigated by comparing off-center positions to the central position. RESULTS: In their respective worst-cases, patient motion increased the eigenvalue-based local SAR by 42%, whole-head SAR by 60%, and the 10-g averaged local SAR by 210%. Local SAR was observed to be more sensitive to displacements along right-left and anterior-posterior directions than displacement in the superior-inferior direction and rotation. CONCLUSION: This is the first study to investigate the effect of all 6 degrees of freedom of motion on safety of practical pulses. Although the results agree with the literature for overlapping cases, the results demonstrate higher increases (up to 3.1-fold) in local SAR for off-axis displacement in the axial plane, which had received less attention in the literature. This increase in local SAR could potentially affect the local SAR compliance of subjects, unless realistic within-scan patient motion is taken into account during pulse design.
Assuntos
Cabeça , Imageamento por Ressonância Magnética , Simulação por Computador , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas , CintilografiaRESUMO
PURPOSE: The design and performance of a novel head coil setup for 31 P spectroscopy at ultra-high field strengths (7T) is presented. The described system supports measurements at both the 1 H and 31 P resonance frequencies. METHODS: The novel coil consists of 2, actively detunable, coaxial birdcage coils to give homogeneous transmit, combined with a double resonant 30 channel receive array. This allows for anatomical imaging combined with 31 P acquisitions over the whole head, without changing coils or disturbing the subject. A phosphate buffer phantom and 3 healthy volunteers were scanned with a pulse acquire CSI sequence using both the novel array coil and a conventional transceiver birdcage. Four different methods of combining the array channels were compared at 3 different levels of SNR. RESULTS: The novel coil setup delivers significantly increased 31 P SNR in the peripheral regions of the brain, reaching up to factor 8, while maintaining comparable performance relative to the birdcage in the center. CONCLUSIONS: The new system offers the potential to acquire whole brain 31 P MRSI with superior signal relative to the standard options.
Assuntos
Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fósforo/química , Razão Sinal-Ruído , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , PrótonsRESUMO
OBJECTIVES: To use multi-parametric magnetic resonance imaging (MRI) to test the hypothesis that hypertensives would have higher retrograde venous blood flow (RVBF) in the internal jugular veins (IJV) vs. normotensives, and that this would inversely correlate with arterial inflow and gray matter, white matter, and cerebrospinal fluid volumes. METHODS: Following local institutional review board approval and written consent, a prospective observational 3-T MRI study of 42 hypertensive patients (53 ± 2 years, BMI 28.2 ± 0.6 kg/m2, ambulatory daytime systolic BP 148 ± 2 mmHg, ambulatory daytime diastolic BP 101 ± 2 mmHg) and 35 normotensive patients (48 ± 2 years, BMI 25.2 ± 0.8 kg/m2, ambulatory daytime systolic BP 119 ± 3 mmHg, ambulatory daytime diastolic BP 90 ± 2 mmHg) was performed. Phase contrast imaging calculated percentage retrograde venous blood flow (%RVBF), brain segmentation estimated regional brain volumes from 3D T1-weighted images, and pseudo-continuous arterial spin labeling measured regional cerebral blood perfusion. Statistical analysis included two-sample equal variance Student's T tests, two-way analysis of variance with Tukey's post hoc correction, and permutation-based two-group general linear modeling (p < 0.05). RESULTS: In the left IJV, %RVBF was higher in hypertensives (6.1 ± 1.5%) vs. normotensives (1.1 ± 0.3%, p = 0.003). In hypertensives, there was an inverse relationship of %RVBF (permutation-based general linear modeling) to cerebral blood flow in several brain regions, including the left occipital pole and the cerebellar vermis (p < 0.01). Percentage retrograde flow in the left IJV correlated inversely with the total matter volume (gray plus white matter volume) in hypertensives (r = - 0.49, p = 0.004). CONCLUSION: RVBF in the left IJV is greater in hypertensives vs. normotensives and is linked to regional hypoperfusion and brain total matter volume. KEY POINTS: ⢠Hypertensive humans have higher retrograde cerebral venous blood flow, associated with regional brain hypoperfusion and lower tissue volume, compared with controls. ⢠Cerebral retrograde venous blood flow may add further stress to already hypoperfused tissue in hypertensive patients. ⢠The amount of retrograde venous blood flow in hypertensive patients may predict which patients might be at higher risk of developing cerebral pathologies.
Assuntos
Artérias Cerebrais/fisiopatologia , Hipertensão/fisiopatologia , Veias Jugulares/diagnóstico por imagem , Veias Jugulares/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Marcadores de SpinRESUMO
For over 35 years, scholars have searched with little success for a legal safeguard that can sensitize jurors to eyewitness testimony. The present study explored whether expert testimony that uses the I-I-Eye method of analyzing eyewitness testimony can improve juror sensitivity to eyewitness evidence. Participants read a trial transcript with no expert testimony, standard expert testimony or expert testimony that used the I-I-Eye method. The two transcripts for the three expert groups had either strong or weak eyewitness testimony. Unlike the control participants, the I-I-Eye expert participants rendered significantly more guilty verdicts in the strong than in the weak case. The standard expert testimony did not affect verdicts even though it increased participants' knowledge of the eyewitness factors. It appears that the I-I-Eye method improved sensitivity because it not only increased participants' knowledge of eyewitness factors, but also explained how to use that knowledge in assessing eyewitness accuracy.
RESUMO
In this work, we investigate the regional characteristics of the dynamic interactions between arterial CO2 and BOLD (dynamic cerebrovascular reactivity - dCVR) during normal breathing and hypercapnic, externally induced step CO2 challenges. To obtain dCVR curves at each voxel, we use a custom set of basis functions based on the Laguerre and gamma basis sets. This allows us to obtain robust dCVR estimates both in larger regions of interest (ROIs), as well as in individual voxels. We also implement classification schemes to identify brain regions with similar dCVR characteristics. Our results reveal considerable variability of dCVR across different brain regions, as well as during different experimental conditions (normal breathing and hypercapnic challenges), suggesting a differential response of cerebral vasculature to spontaneous CO2 fluctuations and larger, externally induced CO2 changes that are possibly associated with the underlying differences in mean arterial CO2 levels. The clustering results suggest that anatomically distinct brain regions are characterized by different dCVR curves that in some cases do not exhibit the standard, positive valued curves that have been previously reported. They also reveal a consistent set of dCVR cluster shapes for resting and forcing conditions, which exhibit different distribution patterns across brain voxels.
Assuntos
Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Acoplamento Neurovascular/fisiologia , Respiração , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Hipercapnia/diagnóstico por imagem , MasculinoRESUMO
There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.
Assuntos
Imaginação , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Neurorretroalimentação , Adulto , Mapeamento Encefálico , Feminino , Humanos , Cinestesia , Masculino , Autocontrole , Adulto JovemRESUMO
Neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) play central roles in reward-related behaviours. Nonhuman animal studies suggest that these neurons also process aversive events. However, our understanding of how the human VTA and SNC responds to such events is limited and has been hindered by the technical challenge of using functional magnetic resonance imaging (fMRI) to investigate a small structure where the signal is particularly vulnerable to physiological noise. Here we show, using methods optimized specifically for the midbrain (including high-resolution imaging, a novel registration protocol, and physiological noise modelling), a BOLD (blood-oxygen-level dependent) signal to both financial gain and loss in the VTA and SNC, along with a response to nil outcomes that are better or worse than expected in the VTA. Taken together, these findings suggest that the human VTA and SNC are involved in the processing of both appetitive and aversive financial outcomes in humans.