RESUMO
With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial-production scales using continuous-flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C-N cross-coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter. Through the use of this scaling factor and characterization of the photonic flux within each reactor, the cross-coupling was scaled successfully from the milligram scale in batch to a multi-kilogram reaction in flow.
RESUMO
Microfluidic droplet sorting enables the high-throughput screening and selection of water-in-oil microreactors at speeds and volumes unparalleled by traditional well-plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for high-throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESI-MS). Droplets are split, one portion is analyzed by ESI-MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samples s-1 is achieved with 98 % accuracy using a self-correcting and adaptive sorting algorithm. We use the system to screen ≈15 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Label-free ESI-MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.
Assuntos
Aminas/análise , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Microfluídica/métodos , Piridinas/análise , Transaminases/metabolismo , Algoritmos , Ativação Enzimática , Estudos de Viabilidade , Imidazóis/química , Técnicas Analíticas Microfluídicas , Piridinas/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Resistance to antibiotics among bacterial pathogens is rapidly spreading, and therapeutic options against multidrug-resistant bacteria are limited. There is an urgent need for new drugs, especially those that can circumvent the broad array of resistance pathways that bacteria have evolved. In this study, we assessed the pharmacokinetic/pharmacodynamic relationship of the novel ß-lactamase inhibitor relebactam (REL; MK-7655) in a hollow-fiber infection model. REL is intended for use with the carbapenem ß-lactam antibiotic imipenem for the treatment of Gram-negative bacterial infections. In this study, we used an in vitro hollow-fiber infection model to confirm the efficacy of human exposures associated with the phase 2 doses (imipenem at 500 mg plus REL at 125 or 250 mg administered intravenously every 6 h as a 30-min infusion) against imipenem-resistant strains of Pseudomonas aeruginosa and Klebsiella pneumoniae Dose fractionation experiments confirmed that the pharmacokinetic parameter that best correlated with REL activity is the area under the concentration-time curve, consistent with findings in a murine pharmacokinetic/pharmacodynamic model. Determination of the pharmacokinetic/pharmacodynamic relationship between ß-lactam antibiotics and ß-lactamase inhibitors is complex, as there is an interdependence between their respective exposure-response relationships. Here, we show that this interdependence could be captured by treating the MIC of imipenem as dynamic: it changes with time, and this change is directly related to REL levels. For the strains tested, the percentage of the dosing interval time that the concentration remains above the dynamic MIC for imipenem was maintained at the carbapenem target of 30 to 40%, required for maximum efficacy, for imipenem at 500 mg plus REL at 250 mg.
Assuntos
Imipenem/farmacologia , Inibidores de beta-Lactamases/farmacologia , Animais , Compostos Azabicíclicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Testes de Sensibilidade MicrobianaRESUMO
We present here a new CryoEM grid boxes storage system designed to simplify sample labeling, tracking and retrieval. The system is based on the crystal pucks widely used by the X-ray crystallographic community for storage and shipping of crystals. This system is suitable for any cryoEM laboratory, but especially for large facilities that will need accurate tracking of large numbers of samples coming from different sources.
Assuntos
Microscopia Crioeletrônica/métodos , Manejo de Espécimes/métodos , Automação Laboratorial , Preservação Biológica/métodos , Projetos de Pesquisa , Manejo de Espécimes/normasRESUMO
Organic electrochemistry has emerged as an enabling and sustainable technology in modern organic synthesis. Despite the recent renaissance of electrosynthesis, the broad adoption of electrochemistry in the synthetic community, and especially in industrial settings, has been hindered by the lack of general, standardized platforms for high-throughput experimentation (HTE). Herein, we disclose the design of the HTe - Chem, a high-throughput microscale electrochemical reactor that is compatible with existing HTE infrastructure and enables the rapid evaluation of a broad array of electrochemical reaction parameters. Utilizing the HTe - Chem to accelerate reaction optimization, reaction discovery, and chemical library synthesis is illustrated using a suite of oxidative and reductive transformations under constant current, constant voltage, and electrophotochemical conditions.
RESUMO
As the biopharmaceutical industry moves toward high concentration of monoclonal antibody drug substance, additional development is required early on when material is still limited. A key constraint is the availability of predictive high-throughput low-volume filtration screening systems for bioprocess development. This particularly impacts final stages such as ultrafiltration/diafiltration steps where traditional scale-down systems need hundreds of milliliters of material per run. Recently, the ambr® crossflow system has been commercialized by Sartorius Stedim Biotech (SSB) to meet this need. It enables parallel high throughput experimentation by only using a fraction of typical material requirements. Critical parameters for predictive filtration systems include loading, mean transmembrane pressure (Δ P¯TMP ), and crossflow rate (QF ). While axial pressure drop (ΔPaxial ) across the cartridge is a function of these parameters, it plays a key role and similar values should result across scales. The ambr® crossflow system is first presented describing typical screening experiments. Its performance is then compared to a traditional pilot-scale tangential flow filtration (TFF) at defined conditions. The original ambr® crossflow (CF) cartridge underperformed resulting in ~20x lower ΔPaxial than the pilot-scale TFF flat-sheet cassette. With an objective to improve the scalability of the system, efforts were made to understand this scale difference. The ambr® CF cartridge was successfully modified by restricting the flow of the feed channel, and thus increasing its ΔPaxial . Additional studies across a range of loading (100-823 gm-2 ); Δ P¯TMP (12-18 psi); and QF (4-8 L/min/m2 ) were conducted in both scales. Comparable flux and aggregate levels were achieved.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Filtração , Fracionamento por Campo e Fluxo , Ensaios de Triagem em Larga Escala , Anticorpos Monoclonais/química , PressãoRESUMO
Our hollow-fiber infection model simulated the projected steady-state pharmacokinetics of ceftolozane and tazobactam in lung epithelial lining fluid of patients with pneumonia receiving 3 g of ceftolozane/tazobactam every 8 hours. Results confirmed the previously established in vitro activity of ceftolozane/tazobactam at and above approved breakpoints against multidrug-resistant Pseudomonas aeruginosa, regardless of Pseudomonas-derived cephalosporinase allele.
RESUMO
OBJECTIVES: The aim of this study was to develop an integrated system for in vitro pharmacodynamic modelling of antimicrobials with greater flexibility, easier control and better accuracy than existing in vitro models. METHODS: Custom-made bottle caps, fittings, valve controllers and a modified bench-top shaking incubator were used. A temperature-controlled automated sample collector was built. Computer software was developed to manage experiments and to control the entire system including solenoid pinch valves, peristaltic pumps and the sample collector. The system was validated by pharmacokinetic simulations of linezolid 600 mg infusion. The antibacterial effect of linezolid against multiple Staphylococcus aureus strains was also studied in this system. RESULTS: An integrated semi-automated bench-top system was built and validated. The temperature-controlled automated sample collector allowed unattended collection and temporary storage of samples. The system software reduced the labour necessary for many tasks and also improved the timing accuracy for performing simultaneous actions in multiple parallel experiments. The system was able to simulate human pharmacokinetics of linezolid 600 mg intravenous infusion accurately. A pharmacodynamic study of linezolid against multiple S. aureus strains with a range of MICs showed that the required 24 h free drug AUC/MIC ratio was approximately 30 in order to keep the organism counts at the same level as their initial inoculum and was about > or = 68 in order to achieve > 2 log(10) cfu/mL reduction in the in vitro model. CONCLUSIONS: The integrated semi-automated bench-top system provided the ability to overcome many of the drawbacks of existing in vitro models. It can be used for various simple or complicated pharmacokinetic/pharmacodynamic studies efficiently and conveniently.
Assuntos
Antibacterianos/farmacologia , Antibacterianos/farmacocinética , Automação , Staphylococcus aureus/efeitos dos fármacos , Acetamidas/farmacocinética , Acetamidas/farmacologia , Contagem de Colônia Microbiana , Humanos , Técnicas In Vitro , Linezolida , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Oxazolidinonas/farmacocinética , Oxazolidinonas/farmacologia , Fatores de TempoRESUMO
A simplified approach to quantum yield ([Formula: see text]) measurement using in situ LED NMR spectroscopy has been developed. The utility and performance of NMR actinometry has been demonstrated for the well-known chemical actinometers potassium ferrioxalate and o-nitrobenzaldehyde. A novel NMR-friendly actinometer, 2,4-dinitrobenzaldehyde, has been introduced for both 365 and 440 nm wavelengths. The method has been utilized successfully to measure the quantum yield of several recently published photochemical reactions.
RESUMO
Photocatalysis for organic synthesis has experienced an exponential growth in the past 10 years. However, the variety of experimental procedures that have been reported to perform photon-based catalyst excitation has hampered the establishment of general protocols to convert visible light into chemical energy. To address this issue, we have designed an integrated photoreactor for enhanced photon capture and catalyst excitation. Moreover, the evaluation of this new reactor in eight photocatalytic transformations that are widely employed in medicinal chemistry settings has confirmed significant performance advantages of this optimized design while enabling a standardized protocol.
RESUMO
The Trans Cell Layer Electrical Field Stimulation (TCL-EFS) system has been developed for high-throughput screening (HTS) of voltage-gated ion channels in microplate format on a Voltage-Ion Probe Reader (VIPR) platform. In this design, a wire electrode is placed above the cell layer of each filter well, and a whole plate perimeter electrode resides beneath the filter layer. This configuration allows the electrodes to be placed away from the cell layer to minimize the near electrode field effects on cell function and dye bleaching observed with other existing designs. Mathematical simulation indicates that the electric field at the cell layer becomes uniform as the top electrode is raised to a position near the surface of the solution in the well. Using the TCL-EFS system and membrane potential fluorescence resonance energy transfer (FRET) dyes, the sensitivity of voltage-gated sodium channels to tetrodotoxin and other channel inhibitors was found to be similar to those determined by established electrophysiological and more conventional VIPR techniques. A good correlation was also observed with the TCL-EFS system for inhibition of Cav2.2 by omega-conotoxin-GVIA and for block of Cav1.2 by known small molecule inhibitors. Thus, the TCLEFS system is suitable for both quantitative analysis and HTS of voltage-gated sodium and calcium channels, without the liabilities of previously reported EFS methodologies.
Assuntos
Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Proteínas Musculares/fisiologia , Canais de Sódio/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Simulação por Computador , Estimulação Elétrica , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Humanos , Cinética , Proteínas Musculares/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia , ômega-Conotoxina GVIA/farmacologiaRESUMO
We describe the basis of a new design for a user-friendly and easily reproduced mercury-displacement plethysmograph. This system was validated using the rat adjuvant-induced arthritis model in female Lewis rats. Furthermore, 2 different caging systems were evaluated to ensure that caging did not have an effect on disease progression and severity. These groups were evaluated further under frequent- and infrequent-handling conditions. Housing had less effect on the amount of swelling seen during the disease than did the amount of handling. Frequent handling significantly reduced the degree of paw swelling. Frequently handled, arthritic rats housed 5 rats per cage in the Box B system also lost a biologically significant amount of weight by the end of the study. Therefore, we do not recommend housing more than 4 rats per cage under these conditions.