Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 309(8): H1336-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26371164

RESUMO

Rad-GTPase is a regulator of L-type calcium current (LTCC), with increased calcium current observed in Rad knockout models. While mouse models that result in elevated LTCC have been associated with heart failure, our laboratory and others observe a hypercontractile phenotype with enhanced calcium homeostasis in Rad(-/-). It is currently unclear whether this observation represents an early time point in a decompensatory progression towards heart failure or whether Rad loss drives a novel phenotype with stable enhanced function. We test the hypothesis that Rad(-/-) drives a stable nonfailing hypercontractile phenotype in adult hearts, and we examine compensatory regulation of sarcoplasmic reticulum (SR) loading and protein changes. Heart function was measured in vivo with echocardiography. In vivo heart function was significantly improved in adult Rad(-/-) hearts compared with wild type. Heart wall dimensions were significantly increased, while heart size was decreased, and cardiac output was not changed. Cardiac function was maintained through 18 mo of age with no decompensation. SR releasable Ca(2+) was increased in isolated Rad(-/-) ventricular myocytes. Higher Ca(2+) load was accompanied by sarco/endoplasmic reticulum Ca(2+) ATPase 2a (SERCA2a) protein elevation as determined by immunoblotting and a rightward shift in the thapsigargan inhibitor-response curve. Rad(-/-) promotes morphological changes accompanied by a stable increase in contractility with aging and preserved cardiac output. The Rad(-/-) phenotype is marked by enhanced systolic and diastolic function with increased SR uptake, which is consistent with a model that does not progress into heart failure.


Assuntos
Envelhecimento/metabolismo , Insuficiência Cardíaca/prevenção & controle , Miocárdio/enzimologia , Sístole , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Proteínas ras/deficiência , Adaptação Fisiológica , Fatores Etários , Envelhecimento/genética , Animais , Sinalização do Cálcio , Débito Cardíaco , Progressão da Doença , Genótipo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fenótipo , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Proteínas ras/genética
2.
JACC Basic Transl Sci ; 3(1): 83-96, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29732439

RESUMO

The protein Rad interacts with the LTCC to modulate trigger Ca2+, hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction (AMI). Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given a safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad, and testing the efficacy of Rad-deletion in cardioprotection relative to the time of onset of AMI.

3.
Bone ; 103: 270-280, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28732776

RESUMO

The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.


Assuntos
Adipogenia/fisiologia , Densidade Óssea/fisiologia , Medula Óssea/enzimologia , Osteogênese/fisiologia , Proteínas ras/metabolismo , Tecido Adiposo/patologia , Animais , Medula Óssea/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Cardiovasc Transl Res ; 9(5-6): 432-444, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798760

RESUMO

Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad-/-) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad-/- confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad-/-. Rad-/- basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support.


Assuntos
Cardiomegalia/metabolismo , Deleção de Genes , Frequência Cardíaca , Coração/inervação , Contração Miocárdica , Sistema Nervoso Simpático/fisiopatologia , Proteínas ras/deficiência , Animais , Canais de Cálcio Tipo L/metabolismo , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Estudos de Casos e Controles , Ecocardiografia sob Estresse/métodos , Genótipo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Isoproterenol/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Sarcômeros/metabolismo , Sarcômeros/patologia , Sistema Nervoso Simpático/efeitos dos fármacos , Simpatomiméticos/administração & dosagem , Remodelação Ventricular , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa