Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanotechnology ; 34(12)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595263

RESUMO

The mid-infrared region (MIR) is crucial for many applications in security and industry, in chemical and biomolecular sensing, since it contains strong characteristic vibrational transitions of many important molecules and gases (e.g. CO2, CH4, CO). Despite its great potential, the optical systems operating in this spectral domain are still under development. The situation is caused mainly by the lack of inexpensive and adequate optical materials which show no absorption in the MIR. In this work, we present an easy and affordable way to develop 1D photonic crystals (PCs) based on porous anodic alumina for MIR region. The porous PCs were produced by the pulse anodization of aluminum using charge-controlled mode. The first order photonic stopbands (λ1) were located within ca. 3.5-6.5µm. Annealing of the material at 1100 °C for an hour has allowed to recover the wavelength range from around 5.8 to 7.5µm owing to the decomposition of the absorption centers (oxalate anions) present in the anodic oxide framework while maintaining the PC structural stability. The spectral position and the shape of the resonances were regulated by the charge passing under high (UH) and low (UL) voltage pulses, porosity of the correspondingdHanddLsegments, and dura tion of the process (ttot). The thickness of thedHanddLlayers was proportional to the charge passing under respective pulses, with the proportionality coefficient increasing with the applied voltage. Despite the constant charge (2500 mC cm-2) applied during the anodization, the thickness of anodic alumina (d) increased with applied voltage (10-60 V) and anodizing temperature (5 °C-30 °C). This behavior was ascribed to the different kinetics of the anodic alumina formation prompted by the variable electrochemical conditions. The photonic material can be used in portable nondispersive gas sensors as an enhancement layer operating up to around 9µm.

2.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992050

RESUMO

The article presents the history of the development and the current state of the apparatus for the detection of interferents and biological warfare simulants in the air with the laser-induced fluorescence (LIF) method. The LIF method is the most sensitive spectroscopic method and also enables the measurement of single particles of biological aerosols and their concentration in the air. The overview covers both the on-site measuring instruments and remote methods. The spectral characteristics of the biological agents, steady-state spectra, excitation-emission matrices, and their fluorescence lifetimes are presented. In addition to the literature, we also present our own detection systems for military applications.


Assuntos
Militares , Humanos , Espectrometria de Fluorescência , Aerossóis
3.
Nanotechnology ; 33(45)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35878593

RESUMO

Porous anodic alumina (PAA) photonic crystals with a photonic stop-band (PSB) placed in the mid-infrared (MIR) spectral region represent a promising approach for increasing of gas sensors sensitivity. An onion-like layered distribution of anionic impurities is a hallmark of PAA, and its presence is generally considered to demarcate the boundary between transparent and opaque ranges in the infrared spectral region. Here, we study the effect of annealing in the temperature range of 450 °C-1 100 °C on the structural stability and optical properties in photonic crystals based on PAA fabricated by pulse anodization in oxalic acid. Pulse sequences were selected in a way to obtain photonic crystals of different periodic structures with a PSB located in visible and MIR spectral regions. The first photonic crystal was composed of layers with gradually changing porosity, whereas the second photonic crystal consisted of a sequentially repeated double-layer unit with an abrupt change in porosity. We investigated the response of alumina with rationally designed porosities and different arrangements of porous layers for high-temperature treatment. The microstructure (scanning electron microscopy), phase composition (x-ray diffraction), and optical properties (optical spectroscopy) were analysed to track possible changes after annealing. Both photonic crystals demonstrated an excellent structural stability after 24 h annealing up to 950 °C. At the same time, the evaporation of the anionic impurities from PAA walls caused a shift of the PSB towards the shorter wavelengths. Furthermore, the annealing at 1 100 °C induced a high transparency (up to 90%) of alumina in MIR spectral region. It was shown thus that properly selected electrochemical and annealing conditions enable the fabrication of porous photonic crystals with the high transparency spanning the spectral range up to around 10µm.

4.
Appl Opt ; 60(22): 6414-6421, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612876

RESUMO

This paper presents a method of estimation of the nominal ocular hazard distance (NOHD) and the nominal ocular dazzle distance (NODD) for multibeam laser radiation. For the analysis, laser beams propagating in the same optical path (overlapping) but with different wavelength, power, and divergences in two perpendicular planes were assumed. To the authors' best knowledge, such a comprehensive analysis of multiple beams, considering the above parameters, is being presented for the first time. The dazzling possibilities described thus far assumed a single beam of radiation with a circular cross-section. This article also presents the calculation results of the NOHD and the NODD values for three laser beams with wavelengths in the red, green, and blue radiation spectrum with assumed parameters. Similar calculations were also made for a commercial laser source with potential use for laser dazzling. The presented analysis did not take into account the attenuation of radiation by the atmosphere. Moreover, the study provides recommendations on how to design effective, but safe, multiwavelength laser dazzlers.

5.
Appl Opt ; 60(23): 6849, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34613165

RESUMO

This publisher's note corrects funding information in Appl. Opt.60, 6414 (2021) APOPAI0003-693510.1364/AO.431490.

6.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833684

RESUMO

In this article, we present a versatile gas detector that can operate on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV). The device has six electrochemical modules, which can be selected to measure specific gases, according to the mission requirements. The gas intake is realized by a miniaturized vacuum pump, which provides immediate gas distribution to the sensors and improves a fast response. The measurement data are sent wirelessly to the operator's computer, which continuously stores results and presents them in real time. The 2 m tubing allows measurements to be taken in places that are not directly accessible to the UGV or the UAV. While UAVs significantly enhanced the versatility of sensing applications, point gas detection is challenging due to the downwash effect and gas dilution produced by the rotors. In our work, we demonstrated the method of downwash effect reduction at aerial point gas measurements by applying a long-distance probe, which was kept between the UAV and the examined object. Moreover, we developed a safety connection protecting the UAV and sensor in case of accidental jamming of the tubing inside the examined cavity. The methods presented provide an effective gas metering strategy using UAVs.

7.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353048

RESUMO

This study shows the results of air monitoring in high- and low-occupancy rooms using two combinations of sensors, AeroTrak8220(TSI)/OPC-N3 (AlphaSense, Great Notley, UK) and OPC-N3/PMS5003 (Plantower, Beijing, China), respectively. The tests were conducted in a flat in Warsaw during the restrictions imposed due to the COVID-19 lockdown. The results showed that OPC-N3 underestimates the PN (particle number concentration) by about 2-3 times compared to the AeroTrak8220. Subsequently, the OPC-N3 was compared with another low-cost sensor, the PMS5003. Both devices showed similar efficiency in PN estimation, whereas PM (particulate matter) concentration estimation differed significantly. Moreover, the relationship among the PM1-PM2.5-PM10 readings obtained with the PMS5003 appeared improbably linear regarding the natural indoor conditions. The correlation of PM concentrations obtained with the PMS5003 suggests an oversimplified calculation method of PM. The studies also demonstrated that PM1, PM2.5, and PM10 concentrations in the high- to low-occupancy rooms were about 3, 2, and 1.5 times, respectively. On the other hand, the use of an air purifier considerably reduced the PM concentrations to similar levels in both rooms. All the sensors showed that frying and toast-making were the major sources of particulate matter, about 10 times higher compared to average levels. Considerably lower particle levels were measured in the low-occupancy room.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Material Particulado/química , COVID-19 , Controle de Doenças Transmissíveis/instrumentação , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , SARS-CoV-2/patogenicidade
8.
ACS Omega ; 9(1): 1670-1682, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222608

RESUMO

Surface modification by plasmonic metals is one of the most promising ways to increase the band-to-band excitonic recombination in zinc oxide (ZnO) nanostructures. However, the metal-induced modulation of the UV light emission depends strongly on the production method, making it difficult to recognize the mechanism responsible for charge/energy transfer between the semiconductor and a metal. Therefore, in this study, the ZnO/Ag and Au hybrids were produced by the same, fully controlled experimental approach. ZnO nanotubes (NTs), fabricated by a template-assisted ALD synthesis, were coated by metals of variable mass thickness (1-6.5 nm thick) using the electron beam PVD technique. The deposited Ag and Au metals grew in the form of island films made of metallic nanoparticles (NPs). The size of the NPs and their size distribution decreased, while the spacing between the NPs increased as the mass of the deposited Ag and Au metals decreased. Systematic optical analysis allowed us to unravel a specific role of surface defects in ZnO NTs in the processes occurring at the ZnO/metal interface. The enhancement of the UV emission was observed only in the ZnO/Ag system. The phenomena were tentatively ascribed to the coupling between the defect-related (DL) excitonic recombination in ZnO and the localized surface plasmon resonance (LSPR) at the Ag NPs. However, the enhancement of UV light was observed only for a narrow range of Ag NP dimensions, indicating the great importance of the size and internanoparticle spacing in the plasmonic coupling. Moreover, the enhancement factors were much stronger in ZnO NTs characterized by robust DL-related emission before metal deposition. In contrast to Ag, Au coatings caused quenching of the UV emission from ZnO NTs, which was attributed to the uncoupling between the DL and LSP energies in this system and a possible formation of the ohmic contact between the Au metal and the ZnO.

9.
Materials (Basel) ; 13(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708744

RESUMO

In this work, the influence of a wide range anodizing temperature (5-30 °C) on the growth and optical properties of PAA-based distributed Bragg reflector (DBR) was studied. It was demonstrated that above 10 °C both structural and photonic properties of the DBRs strongly deteriorates: the photonic stop bands (PSBs) decay, broaden, and split, which is accompanied by the red shift of the PSBs. However, at 30 °C, new bands in transmission spectra appear including one strong and symmetric peak in the mid-infrared (MIR) spectral region. The PSB in the MIR region is further improved by a small modification of the pulse sequence which smoothen and sharpen the interfaces between consecutive low and high refractive index layers. This is a first report on PAA-based DBR with a good quality PSB in MIR. Moreover, it was shown that in designing good quality DBRs a steady current recovery after subsequent application of high potential (UH) pulses is more important than large contrast between low and high potential pulses (UH-UL contrast). Smaller UH-UL contrast helps to better control the current evolution during pulse anodization. Furthermore, the lower PSB intensity owing to the smaller UH-UL contrast can be partially compensated by the higher anodizing temperature.

10.
Materials (Basel) ; 13(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317144

RESUMO

In this work, the influence of various electrochemical parameters on the production of porous anodic alumina (PAA)-based DBRs (distributed Bragg reflector) during high-temperature-pulse-anodization was studied. It was observed that lowering the temperature from 30 to 27 °C brings about radical changes in the optical performance of the DBRs. The multilayered PAA fabricated at 27 °C did not show optical characteristics typical for DBR. The DBR performance was further tuned at 30 °C. The current recovery (iamax) after application of subsequent UH pulses started to stabilize upon decreasing high (UH) and low (UL) voltage pulses, which was reflected in a smaller difference between initial and final thickness of alternating dH and dL segments (formed under UH and UL, respectively) and a better DBR performance. Shortening UH pulse duration resulted in a progressive shift of photonic stopbands (PSBs) towards the blue part of the spectrum while keeping intensive and symmetric PSBs in the NIR-MIR range. Despite the obvious improvement of the DBR performance by modulation of electrochemical parameters, the problem with regarding full control over the homogeneous formation of dH+dL pairs remains. Solving this problem will certainly lead to the production of affordable and efficient PAA-based photonic crystals with tunable photonic properties in the NIR-MIR region.

11.
Materials (Basel) ; 12(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575000

RESUMO

The structural and optical evolution of the ZnS thin films prepared by atomic layer deposition (ALD) from the diethylzinc (DEZ) and 1,5-pentanedithiol (PDT) as zinc and sulfur precursors was studied. A deposited ZnS layer (of about 60 nm) is amorphous, with a significant S excess. After annealing, the stoichiometry improved for annealing temperatures ≥400 °C and annealing time ≥2 h, and 1:1 stoichiometry was obtained when annealed at 500 °C for 4 h. ZnS crystallized into small crystallites (1-7 nm) with cubic sphalerite structure, which remained stable under the applied annealing conditions. The size of the crystallites (D) tended to decrease with annealing temperature, in agreement with the EDS data (decreased content of both S and Zn with annealing temperature); the D for samples annealed at 600 °C (for the time ≤2 h) was always the smallest. Both reflectivity and ellipsometric spectra showed characteristics typical for quantum confinement (distinct dips/peaks in UV spectral region). It can thus be concluded that the amorphous ZnS layer obtained at a relatively low temperature (150 °C) from organic S precursor transformed into the layers built of small ZnS nanocrystals of cubic structure after annealing at a temperature range of 300-600 °C under Ar atmosphere.

12.
Forensic Sci Int ; 248: 71-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598484

RESUMO

The classification of dry powder samples is an important step in managing the consequences of terrorist incidents. Fluorescence decays of these samples (vegetative bacteria, bacterial endospores, fungi, albumins and several flours) were measured with stroboscopic technique using an EasyLife LS system PTI. Three pulsed nanosecond LED sources, generating 280, 340 and 460nm were employed for samples excitation. The usefulness of a new 460nm light source for fluorescence measurements of dry microbial cells has been demonstrated. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) have been used for classification of dry biological samples. It showed that the single excitation wavelength was not sufficient for differentiation of biological samples of diverse origin. However, merging fluorescence decays from two or three excitation wavelengths allowed classification of these samples. An experimental setup allowing the practical implementation of this method for the real time fluorescence decay measurement was designed. It consisted of the LED emitting nanosecond pulses at 280nm and two fast photomultiplier tubes (PMTs) for signal detection in two fluorescence bands simultaneously. The positive results of the dry powder samples measurements confirmed that the fluorescence decay-based technique could be a useful tool for fast classification of the suspected "white powders" performed by the first responders.


Assuntos
Bioterrorismo , Enganação , Fluorescência , Análise por Conglomerados , Fungos/fisiologia , Humanos , Pós , Análise de Componente Principal , Esporos Bacterianos/fisiologia , Estroboscopia
13.
Artigo em Inglês | MEDLINE | ID: mdl-22765943

RESUMO

Spectroscopic techniques are under investigation on possibility of differentiation of airborne particles. This paper describes pollen discrimination among others bio-particles in laboratory conditions. Pollen samples were characterized with UV-Vis fluorescence, drift and KBr pellet techniques of infrared spectroscopy. Principal Component Analysis of UV-Vis fluorescence and FTIR spectra revealed that pollens can be distinguished from other bio-materials with use of these methods. Both methods resulted in similar classification capability. Combined FTIR and fluorescence data analysis did not improve the discrimination between pollen allergens and other airborne biological materials.


Assuntos
Plantas/química , Pólen/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Escherichia coli , Ovalbumina/análise , Penicillium , Análise de Componente Principal
14.
Artigo em Inglês | MEDLINE | ID: mdl-21257340

RESUMO

Rapid detection and discrimination of dangerous biological materials such as bacteria and their spores has become a security aim of considerable importance. Various analytical methods, including FTIR spectroscopy combined with statistical analysis have been used to identify vegetative bacteria, bacterial spores and background interferants. The present work discusses the application of FTIR technique performed in reflectance mode using Horizontal Attenuated Total Reflectance accessory (HATR) to the discrimination of biological materials. In comparison with transmission technique the HATR is more rapid and do not require the sample destruction, simultaneously giving similar absorbance bands. HATR-FTIR results combined with statistical analysis PCA and HCA demonstrate that this combination provides novel and accurate microbial identification technique.


Assuntos
Bactérias/química , Interpretação Estatística de Dados , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Esporos Bacterianos/química , Humanos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa