Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Colloids Surf A Physicochem Eng Asp ; 560: 136-140, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33479556

RESUMO

Controllable surface morphology is requisite across a gamut of processes, industries, and applications. The surface morphology of silica-coated polystyrene microspheres was controllably modified to enable generation of both smooth and bumpy, or raspberry-like, surfaces. Although smooth and raspberry-like silica shells on polystyrene templates have been demonstrated extensively, the method described here used readily available materials to produce radical changes in surface morphology from a single polystyrene template coated in silica through a facile sol-gel reaction processes. Silica shells were deposited via a sol-gel process (using tetraethyl orthosilicate as the silica precursor) onto 1 to 2 µm diameter anionic polystyrene spheres, fabricated by emulsifier-free polymerization. By varying of the concentration of silica precursor and ammonium hydroxide catalyst and altering the electrostatic surface interactions via addition of a cationic polymeric brush, an array of surface topologies was generated. The resulting silica shells ranged from 100 to 200 nm in thickness, as measured by calcination of the polystyrene template. Empirical relations between reaction conditions and the resulting silica colloid diameter were utilized to understand the resultant silica shell topology. These results may serve as a guide to generate a versatile platform for research in the multitude of applications where polystyrene-silica core-shell particles are utilized.

2.
IEEE Trans Ind Electron ; 64(9): 7304-7312, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33479553

RESUMO

A piezoelectric sensor with a floating element was developed for direct measurement of flow induced shear stress. The piezoelectric sensor was designed to detect the pure shear stress while suppressing the effect of normal stress generated from the vortex lift-up by applying opposite poling vectors to the piezoelectric elements. During the calibration stage, the prototyped sensor showed a high sensitivity to shear stress (91.3 ± 2.1 pC/Pa) due to the high piezoelectric coefficients (d 31=-1330 pC/N) of the constituent 0.67Pb(Mg1∕3Nb2∕3)O3-0.33PbTiO3 (PMN-33%PT) single crystal. By contrast, the sensor showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the sensing structure. The usable frequency range of the sensor is up to 800 Hz. In subsonic wind tunnel tests, an analytical model was proposed based on cantilever beam theory with an end-tip-mass for verifying the resonance frequency shift in static stress measurements. For dynamic stress measurements, the signal-to-noise ratio (SNR) and ambient vibration-filtered pure shear stress sensitivity were obtained through signal processing. The developed piezoelectric shear stress sensor was found to have an SNR of 15.8 ± 2.2 dB and a sensitivity of 56.5 ± 4.6 pC/Pa in the turbulent flow.

3.
Prog Org Coat ; 95: 72-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33479554

RESUMO

Coatings with the ability to minimize adhesion of insect residue and other debris are of great interest for future aircraft. These aircraft will exhibit increased fuel efficiency by maintaining natural laminar flow over greater wing chord distances. Successful coatings will mitigate the adhesion of debris on laminar flow surfaces that could cause a premature transition to turbulent flow. The use of surface modifying agents (SMA) that thermodynamically orient towards the air side of a coating can provide specific surface chemistry that may lead to a reduction of contaminate adhesion. Aluminum surfaces coated with urethane co-oligomers containing various amounts of pendant fluoroalky ether groups were prepared, characterized and tested for their abhesive properties. The coated surfaces were subjected to controlled impacts with wingless fruit flies (drosophila melanogaster) using both a benchtop wind tunnel and a larger-scaled wind tunnel test facility. Insect impacts were recorded and analyzed using high-speed digital photography and the remaining residues characterized using optical surface profilometry and compared to that of an aluminum control. It was determined that using fluorinated oligomers to chemically modify coating surfaces altered the adhesion properties relative to the adhesion of insect residues to the surface.

4.
Opt Lett ; 38(8): 1197-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595429

RESUMO

Simultaneous Mie scattering and laser-induced fluorescence (LIF) signals are obtained from individual polystyrene latex microspheres dispersed in an air flow. Microspheres less than 1 µm mean diameter were doped with two organic fluorescent dyes, Rhodamine B (RhB) and dichlorofluorescein (DCF), intended either to provide improved particle-based flow velocimetry in the vicinity of surfaces or to provide scalar flow information (e.g., marking one of two fluid streams). Both dyes exhibit measureable fluorescence signals that are on the order of 10(-3) to 10(-4) times weaker than the simultaneously measured Mie signals. It is determined that at the conditions measured, 95.5% of RhB LIF signals and 32.2% of DCF signals provide valid laser-Doppler velocimetry measurements compared with the Mie scattering validation rate with 6.5 W of 532 nm excitation, while RhB excited with 1.0 W incident laser power still exhibits 95.4% valid velocimetry signals from the LIF channel. The results suggest that the method is applicable to wind tunnel measurements near walls where laser flare can be a limiting factor and monodisperse particles are essential.

5.
Langmuir ; 26(13): 11469-78, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20446721

RESUMO

Low surface energy copoly(imide siloxane)s were generated via condensation polymerization reactions. The generated materials were characterized spectroscopically, thermally, mechanically, and via contact angle goniometry. The decrease in tensile modulus and opaque appearance of copoly(imide siloxane) films indicated phase segregation in the bulk. Preferential surface partitioning of the siloxane moieties was verified by X-ray photoelectron spectroscopy (XPS) and increased advancing water contact angle values (theta(A)). Pristine copoly(imide siloxane) surfaces typically exhibited theta(A) values of 111 degrees and sliding angles from 27 degrees to >60 degrees. The surface properties of these copoly(imide siloxane) films were further altered using laser ablation patterning (frequency-tripled Nd:YAG laser, 355 nm). Laser-etched square pillar arrays (25 microm pillars with 25 microm interspaces) changed theta(A) by up to 64 degrees. Theta(A) values approaching 175 degrees and sliding angles from 1 degree to 15 degrees were observed. ATR-IR spectroscopy and XPS indicated polymer chain scission reactions occurred as a result of laser ablation. Initial particle adhesion studies revealed that the copoly(imide siloxane)s outperformed the corresponding homopolyimides and that laser ablation patterning further enhanced this result.

6.
Rev Sci Instrum ; 91(1): 013903, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012617

RESUMO

A colloidal probe, comprising a colloidal particle attached to an atomic force microscope cantilever, is employed to measure interaction forces between the particle and a surface. It is possible to change or even destroy a particle while attaching it to a cantilever, thus limiting the types of systems to which the colloidal probe technique may be applied. Here, we present the Controlled Heating and Alignment Platform (CHAP) for fabricating colloidal probes without altering the original characteristics of the attached particle. The CHAP applies heat directly to the atomic force microscope chip to rapidly and precisely control the cantilever temperature. It minimizes particle heating and enables control over the viscosity of the thermoplastic adhesive to prevent it from contaminating the particle surface. 3D-printed components made the CHAP compatible with standard optical microscopes and streamlined the fabrication process, while increasing the platform's versatility. To demonstrate the utility of CHAP, we conducted a case study using a thermoplastic wax adhesive to fabricate colloidal probes bearing polystyrene and silica particles between 0.7 and 40 µm in diameter. We characterized the properties and interactions of the adhesive and particles, as well as the properties of the completed probes, to demonstrate the retention of particle features throughout fabrication. Pull-off tests with CHAP's probes measured adhesive force values in the expected ranges and demonstrated that particles were firmly attached to the cantilevers.

7.
J Polym Sci A Polym Chem ; 55(13): 2249-2259, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33376256

RESUMO

Polymeric microspheres have been utilized in a broad range of applications ranging from chromatographic separation techniques to analysis of air flow over aerodynamic surfaces. The preparation of microspheres from many different polymer families has consequently been extensively studied using a variety of synthetic approaches. Although there are a variety of methods of synthesis for polymeric microspheres, free-radical initiated emulsion polymerization is one of the most common techniques. In this work, poly(styrene-co-methyl methacrylate) microspheres were synthesized via surfactant-free emulsion polymerization. The effect of co-monomer composition and addition time on particle size distribution, particle formation, and particle morphology were investigated. Particles were characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM) to gain further insight into particle size and size distributions. Reaction kinetics were analyzed alongside of characterization results. A particle formation mechanism for poly(styrene-co-methyl methacrylate) microspheres was proposed based on characterization results and known reaction kinetics.

8.
J Phys Chem B ; 110(45): 22796-803, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17092030

RESUMO

The free volume properties of phospholipid bilayers have been determined using a new assay that applies the photochromic and solvatochromic properties of merocyanines. The orientation and embedding depth of the merocyanines in the bilayer are controlled using substitution on the merocyanine indole moiety. The free volume changes at the aqueous interface (region 1), the phospholipid headgroup (region 2), and the aliphatic interior (region 3) of the bilayer are compared by analyzing the rate constants for the merocyanine ring-closing reaction. Free volume variations during the P(beta)(')(gel) <--> L(alpha)(liquid) phase transition are observed in region 1, in accordance with large structural rearrangements between the gel and the liquid phases in this region. The largest free volume is found in region 3, and the smallest is found in region 2. This distribution of free volume in the bilayer agrees with computational studies of these systems. Comparison of the free volume in region 2 of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids shows that this method is sensitive to small structural differences between lipids. In region 2, the free volume is found to be approximately 2 times larger in DPPC bilayers, which could be related to different merocyanine interactions with the two phosphatidylcholines. Free volume properties determined on picosecond and second time scales are compared based on an analysis of merocyanine formation and decoloration reactions.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Pirimidinonas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/química , Cinética , Modelos Biológicos , Modelos Químicos , Termodinâmica
9.
J Phys Chem B ; 109(46): 21893-9, 2005 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16853844

RESUMO

Transient absorption spectroscopy was used to investigate the dynamics of the photochromic indolinobenzospiropyran reaction in toluene solution and in phosphatidylcholine bilayers (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)). After excitation with UV light, colorless (R/S)-2-(3',3'-dimethyl-6-nitro-3'H-spiro[chromene-2,2'-indol]-1'-yl)ethanol derivatives are converted to colored merocyanine products in high yield; Phi = 0.45 in DMPC liposomes. We find that the reaction occurs in the bilayer aliphatic region in the gel (P(beta)(')) and liquid (L(alpha)) phases. The Arrhenius activation energy for the isomerization in DMPC bilayers was approximately 3.5 times larger in the liquid phase (L(alpha), E(a) = 26.0 +/- 1.0 kJ mol(-1)) than that in the gel phase (P(beta)('), E(a) = 7.3 +/- 1.6 kJ mol(-1)). Analysis of the isomerization rate constant temperature dependence allows an estimation of the bilayer viscosity and free volume properties in the L(alpha) phase.


Assuntos
Benzopiranos/química , Indóis/química , Bicamadas Lipídicas/química , Nitrocompostos/química , Fosfolipídeos/química , Cinética , Estrutura Molecular , Fotoquímica , Soluções/química , Estereoisomerismo , Temperatura , Fatores de Tempo , Tolueno/química
10.
J Phys Chem B ; 109(47): 22186-91, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16853887

RESUMO

Merocyanine (MC) isomers that are formed after absorption of a UV photon by 1',3'-dihydro-1',3'-3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2',2'-(2H)-indole] were studied. Several, predominantly TTC and TTT, merocyanine isomers are present in toluene solution ("T" and "C" indicate trans and cis conformations of the C-C bonds in the methine bridge). Excitation in the MC visible absorption band (at 490, 550, and 630 nm) with 100 fs laser pulses was used to study MC excited-state dynamics. Internal conversion on the picosecond time scale was found to be the dominant relaxation pathway. Excited-state isomerization reactions were also observed. Excitation at 630 nm (assigned to TTC isomer excitation) leads to formation of a third isomer (either CTC or CTT). Excitation at 490 nm (assigned to TTT isomer excitation) leads to more complex excited-state relaxation, including formation of two isomers: TTC (absorption at 600 nm) and CTC or CTT (absorption at 650 nm).

11.
ACS Appl Mater Interfaces ; 7(37): 20714-25, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26322378

RESUMO

Kiton red 620 (KR620) doped polystyrene latex microspheres (PSLs) were synthesized via soap-free emulsion polymerization to be utilized as a relatively nontoxic, fluorescent seed material for airflow characterization experiments. Poly(styrene-co-styrenesulfonate) was used as the PSL matrix to promote KR620 incorporation. Additionally, a bicarbonate buffer and poly(diallyldimethylammonium chloride), polyD, cationic polymer were added to the reaction solution to stabilize the pH and potentially influence the electrostatic interactions between the PSLs and dye molecules. A design of experiments (DOE) approach was used to efficiently investigate the variation of these materials. Using a 4-factor, 2-level response surface design with a center point, a series of experiments were performed to determine the dependence of these factors on particle diameter, diameter size distribution, fluorescent emission intensity, and KR620 retention. Using statistical analysis, the factors and factor interactions that most significantly affect the outputs were identified. These particles enabled velocity measurements to be made much closer to walls and surfaces than previously. Based on these results, KR620-doped PSLs may be utilized to simultaneously measure the velocity and mixing concentration, among other airflow parameters, in complex flows.

12.
ACS Appl Mater Interfaces ; 5(4): 1254-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23317556

RESUMO

Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable adhesive bonds. Surface preparation by laser ablation provides an alternative to the expensive, hazardous, polluting, and less precise practices used currently such as chemical-dip, manual abrasion and grit blast. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Surface roughness and surface chemical composition were characterized using interference microscopy and X-ray photoelectron spectroscopy, respectively. A technique for fluorescence visualization was developed which allowed for quantitative failure mode analysis. Wedge crack extension testing in a hot, humid environment indicated the relative effectiveness of various surface treatments. Increasing ablation duty cycle reduced crack propagation and adhesive failure. Single lap shear testing showed an increase in strength and durability as laser ablation duty cycle and power were increased. Chemical analyses showed trends for surface chemical species, which correlated with improved bond strength and durability.

13.
J Am Chem Soc ; 126(24): 7578-84, 2004 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15198605

RESUMO

Absolute rate constants and Arrhenius parameters for hydrogen abstractions (from carbon) by the t-butoxyl radical ((t) BuO.) are reported for several hydrocarbons and tertiary amines in solution. Combined with data already in the literature, an analysis of all the available data reveals that most hydrogen abstractions (from carbon) by (t) BuO. are entropy controlled (i.e., TdeltaS > deltaH, in solution at room temperature). For substrates with C-H bond dissociation energies (BDEs) > 92 kcal/mol, the activation energy for hydrogen abstraction decreases with decreasing BDE in accord with the Evans-Polanyi equation, with alpha approximately 0.3. For substrates with C-H BDEs in the range from 79 to 92 kcal/mol, the activation energy does not vary significantly with C-H BDE. The implications of these results in the context of the use of (t) BuO. as a chemical model for reactive oxygen-centered radicals is discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa