Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 172(1): 181-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482077

RESUMO

Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores.


Assuntos
Afídeos/fisiologia , Arabidopsis/metabolismo , Cuscuta/fisiologia , Glucosinolatos/metabolismo , Animais , Afídeos/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Cromatografia Líquida de Alta Pressão , Cuscuta/metabolismo , Cuscuta/parasitologia , Comportamento Alimentar/fisiologia , Genótipo , Interações Hospedeiro-Parasita , Indóis/metabolismo , Mutação
2.
Plant J ; 82(4): 547-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25758811

RESUMO

The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/antagonistas & inibidores
3.
Plant J ; 72(5): 758-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22860609

RESUMO

For most plant hormones, biological activity is suppressed by reversible conjugation to sugars, amino acids and other small molecules. In contrast, the conjugation of jasmonic acid (JA) to isoleucine (Ile) is known to enhance the activity of JA. Whereas hydroxylation and carboxylation of JA-Ile permanently inactivates JA-Ilemediated signaling in plants, the alternative deactivation pathway of JA-Ile by its direct hydrolysis to JA remains unstudied. We show that Nicotiana attenuata jasmonoyl-L-isoleucine hydrolase 1 (JIH1), a close homologue of previously characterized indoleacetic acid alanine resistant 3 (IAR3) gene in Arabidopsis, hydrolyzes both JA-Ile and IAA-Ala in vitro. When the herbivory-inducible NaJIH1 gene was silenced by RNA interference, JA-Ile levels increased dramatically after simulated herbivory in irJIH1, compared with wild-type (WT) plants. When specialist (Manduca sexta) or generalist (Spodoptera littoralis) herbivores fed on irJIH1 plants they gained significantly less mass compared with those feeding on wild-type (WT) plants. The poor larval performance was strongly correlated with the higher accumulation of several JA-Ile-dependent direct defense metabolites in irJIH1 plants. In the field, irJIH1 plants attracted substantially more Geocoris predators to the experimentally attached M. sexta eggs on their leaves, compared with empty vector plants, which correlated with higher herbivory-elicited emissions of volatiles known to function as indirect defenses. We conclude that NaJIH1 encodes a new homeostatic step in JA metabolism that, together with JA and JA-Ilehydroxylation and carboxylation of JA-Ile, rapidly attenuates the JA-Ile burst, allowing plants to tailor the expression of direct and indirect defenses against herbivore attack in nature.


Assuntos
Ciclopentanos/metabolismo , Herbivoria , Hidrolases/metabolismo , Isoleucina/análogos & derivados , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Amidoidrolases/genética , Animais , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hidrolases/genética , Isoleucina/metabolismo , Larva , Manduca/fisiologia , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Spodoptera/fisiologia
4.
BMC Plant Biol ; 13: 73, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23634896

RESUMO

BACKGROUND: To survive herbivore attack, plants have evolved potent mechanisms of mechanical or chemical defense that are either constitutively present or inducible after herbivore attack. Due to the costs of defense deployment, plants often regulate their biosynthesis using various transcription factors (TFs). MYC2 regulators belong to the bHLH family of transcription factors that are involved in many aspects of plant defense and development. In this study, we identified a novel MYC2 TF from N. attenuata and characterized its regulatory function using a combination of molecular, analytic and ecological methods. RESULTS: The transcript and targeted metabolite analyses demonstrated that NaMYC2 is mainly involved in the regulation of the biosynthesis of nicotine and phenolamides in N. attenuata. In addition, using broadly-targeted metabolite analysis, we identified a number of other metabolite features that were regulated by NaMYC2, which, after full annotation, are expected to broaden our understanding of plant defense regulation. Unlike previous reports, the biosynthesis of jasmonates and some JA-/NaCOI1-dependent metabolites (e.g. HGL-DTGs) were not strongly regulated by NaMYC2, suggesting the involvement of other independent regulators. No significant differences were observed in the performance of M. sexta on MYC2-silenced plants, consistent with the well-known ability of this specialist insect to tolerate nicotine. CONCLUSION: By regulating the biosynthesis of nicotine, NaMYC2 is likely to enhance plant resistance against non-adapted herbivores and contribute to plant fitness; however, multiple JA/NaCOI1-dependent mechanisms (perhaps involving other MYCs) that regulate separate defense responses are likely to exist in N. attenuata. The considerable variation observed amongst different plant families in the responses regulated by jasmonate signaling highlights the sophistication with which plants craft highly specific and fine-tuned responses against the herbivores that attack them.


Assuntos
Regulação da Expressão Gênica de Plantas , Manduca/fisiologia , Nicotiana/imunologia , Proteínas de Plantas/imunologia , Fatores de Transcrição/imunologia , Animais , Inativação Gênica , Herbivoria/fisiologia , Nicotina/imunologia , Reguladores de Crescimento de Plantas/imunologia , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/parasitologia , Fatores de Transcrição/genética
5.
Plant Signal Behav ; 13(1): e1422462, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29293391

RESUMO

Feeding by Spodoptera exigua (beet armyworm) larvae on Zea mays (maize) induces expression of 9-lipoxygenases to a greater extent than 13-lipoxygenases. Whereas 13-lipoxygenases have an established role in the synthesis of jasmonates that serve as defense signaling molecules in many plant species, relatively little is known about the role of 9-lipoxygenases in herbivore defense. Phylogenetic analysis of lipoxygenases from maize inbred lines B73 and W22 shows that, although most Lox genes are present in both lines, Lox12, a 9-lipoxygenase that has been implicated in fungal defense, is truncated and unlikely to encode a functional protein in W22. Two independent Mutator transposon insertions in another 9-lipoxygenase, Lox4, caused improved S. exigua growth on the mutant lines relative to wildtype W22. This observation suggests a function in herbivore defense for metabolic products downstream of maize Lox4, either through direct toxicity or a perhaps an as yet unknown signaling function.


Assuntos
Herbivoria/fisiologia , Lipoxigenases/metabolismo , Spodoptera/fisiologia , Zea mays/enzimologia , Zea mays/parasitologia , Animais , Larva/fisiologia , Lipoxigenase/metabolismo , Mutagênese Insercional , Filogenia
6.
AoB Plants ; 10(1): plx076, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29383234

RESUMO

Limited seed or pollen dispersal enhances spatial genetic relatedness between individuals (fine-scale spatial genetic structure, FSGS), which usually decreases as a function of physical distance. However, such isotropic pattern of FSGS may not always occur when spatially asymmetric processes, for instance, wind direction during dispersal, are considered in wind-pollinated and -dispersed plants. This study assessed the pattern of FSGS in the keystone tropical wetland plant Cyperus papyrus (papyrus) as a function of these isotropic and anisotropic processes. We tested the hypothesis that the FSGS would be influenced by predominant wind direction during pollen and seed dispersal, as well as by the physical distance between individuals. We genotyped a total of 510 adults and 407 juveniles from three papyrus swamps (Ethiopia) using 15 microsatellite markers. In addition, the contemporary directional dispersal by wind was evaluated by seed release-recapture experiments and complemented with parentage analysis. Adults and juveniles differed in the strength of isotropic FSGS ranging from 0.09 to 0.13 and 0.12 to 0.16, respectively, and this suggests variation in dispersal distance. Anisotropic FSGS was found to be a function of asymmetric wind direction during dispersal/pollination that varied between sites. Historical gene dispersal distance was astoundingly low (<4 m), possibly due to localized seed rain. According to our contemporary dispersal estimates, mean pollen dispersal distances were longer than those of seed dispersal (101 and <55 m, respectively). More than two-thirds of seeds and half of pollen grains were locally dispersed (≤80 m). The difference in historical and contemporary dispersal distance probably resulted from the asymmetric wind direction due to change in vegetation cover in the surrounding matrix. We further concluded that, in addition to wind direction, post-dispersal processes could influence gene dispersal distance inferred from the FSGS.

7.
BMC Res Notes ; 8: 45, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25888779

RESUMO

BACKGROUND: Although leaf herbivory-induced changes in allocation of recently assimilated carbon between the shoot and below-ground tissues have been described in several species, it is still unclear which part of the root system is affected by resource allocation changes and which signalling pathways are involved. We investigated carbon partitioning in root tissues following wounding and simulated leaf herbivory in young Nicotiana attenuata plants. RESULTS: Using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), which was incorporated into disaccharides in planta, we found that simulated herbivory reduced carbon partitioning specifically to the root tips in wild type plants. In jasmonate (JA) signalling-deficient COI1 plants, the wound-induced allocation of [(18)F]FDG to the roots was decreased, while more [(18)F]FDG was transported to young leaves, demonstrating an important role of the JA pathway in regulating the wound-induced carbon partitioning between shoots and roots. CONCLUSIONS: Our data highlight the use of [(18)F]FDG to study stress-induced carbon allocation responses in plants and indicate an important role of the JA pathway in regulating wound-induced shoot to root signalling.


Assuntos
Carbono/metabolismo , Fluordesoxiglucose F18/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Animais , Autorradiografia , Ciclopentanos/metabolismo , Dissacarídeos/biossíntese , Herbivoria , Especificidade de Órgãos , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Transdução de Sinais , Estresse Fisiológico
8.
Plant Signal Behav ; 92014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24776843

RESUMO

The jasmonate signaling pathway is essential for plant development, reproduction, and defense against herbivores and pathogens. When attacked by herbivores, plants elicit defense responses through the rapid accumulation of jasmonates. Although the transduction of the jasmonate burst into downstream responses has been largely resolved in the past decade, how the jasmonate burst is switched off remained unknown. Recently, two mechanisms that involve cytochrome p450-mediated hydroxylation/carboxylation and NaJIH1-mediated hydrolysis of JA-Ile were identified as major termination mechanisms of JA signaling. Due to a lack of hydrolysis, N. attenuata plants silenced in the expression of the JIH1 gene accumulated significantly more JA-Ile than did wild type plants and became more resistant to herbivore attack. Although less likely, additional functions of JIH1, such as contributing to the pool of free Ile and thereby increasing JA-Ile accumulation, remained untested. Here we show that increased isoleucine availability does not explain the observed phenotype in JIH1-deficient N. attenuata plants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa