RESUMO
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Cognição/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adolescente , Criança , Conectoma/métodos , Alprazolam/farmacologia , Receptores de GABA-A/metabolismo , Adulto JovemRESUMO
Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Genômica , Neoplasias Encefálicas/patologiaRESUMO
Prior work has shown that there is substantial interindividual variation in the spatial distribution of functional networks across the cerebral cortex, or functional topography. However, it remains unknown whether there are sex differences in the topography of individualized networks in youth. Here, we leveraged an advanced machine learning method (sparsity-regularized non-negative matrix factorization) to define individualized functional networks in 693 youth (ages 8 to 23 y) who underwent functional MRI as part of the Philadelphia Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines classified participant sex based on functional topography with 82.9% accuracy (P < 0.0001). Brain regions most effective in classifying participant sex belonged to association networks, including the ventral attention, default mode, and frontoparietal networks. Mass univariate analyses using generalized additive models with penalized splines provided convergent results. Furthermore, transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in multivariate patterns of functional topography were spatially correlated with the expression of genes on the X chromosome. These results highlight the role of sex as a biological variable in shaping functional topography.
Assuntos
Córtex Cerebral , Vias Neurais , Caracteres Sexuais , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Criança , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Adulto JovemRESUMO
Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia. Here, we use pharmacological modulation and computational modeling to study the contribution of GABAergic abnormalities toward emotion processing deficits in schizophrenia. Specifically, we apply principles from network control theory to model persistence energy - the control energy required to maintain brain activation states - during emotion identification and recall tasks, with and without administration of alprazolam, in a sample of first-degree relatives and healthy controls. Here, persistence energy quantifies the magnitude of theoretical external inputs during the task. We find that alprazolam increases persistence energy in relatives but not in controls during threatening face processing, suggesting a compensatory mechanism given the relative absence of behavioral abnormalities in this sample of unaffected relatives. Further, we demonstrate that regions in the fusiform and occipital cortices are important for facilitating state transitions during facial affect processing. Finally, we uncover spatial relationships (i) between regional variation in differential control energy (alprazolam versus placebo) and (ii) both serotonin and dopamine neurotransmitter systems, indicating that alprazolam may exert its effects by altering neuromodulatory systems. Together, these findings provide a new perspective on the distributed emotion processing network and the effect of GABAergic modulation on this network, in addition to identifying an association between schizophrenia risk and abnormal GABAergic effects on persistence energy during threat processing.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Alprazolam/farmacologia , Emoções , Encéfalo , Tonsila do Cerebelo , Mapeamento Encefálico , Imageamento por Ressonância MagnéticaRESUMO
Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: The Penn Computerized Neurocognitive Battery is an efficient tool for assessing brain-behavior domains, and its efficiency was augmented via computerized adaptive testing (CAT). This battery requires validation in a separate sample to establish psychometric properties. METHODS: In a mixed community/clinical sample of N = 307 18-to-35-year-olds, we tested the relationships of the CAT tests with the full-form tests. We compared discriminability among recruitment groups (psychosis, mood, control) and examined how their scores relate to demographics. CAT-Full relationships were evaluated based on a minimum inter-test correlation of 0.70 or an inter-test correlation within at least 0.10 of the full-form correlation with a previous administration of the full battery. Differences in criterion relationships were tested via mixed models. RESULTS: Most tests (15/17) met the minimum criteria for replacing the full-form with the updated CAT version (mean r = 0.67; range = 0.53-0.80) when compared to relationships of the full-forms with previous administrations of the full-forms (mean r = 0.68; range = 0.50-0.85). Most (16/17) CAT-based relationships with diagnostics and other validity criteria were indistinguishable (interaction p > 0.05) from their full-form counterparts. CONCLUSIONS: The updated CNB shows psychometric properties acceptable for research. The full-forms of some tests should be retained due to insufficient time savings to justify the loss in precision.
Assuntos
Teste Adaptativo Computadorizado , Transtornos Mentais , Humanos , Encéfalo , Psicometria , Cognição , Reprodutibilidade dos TestesRESUMO
Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance. To address these questions, we studied 1,150 youths (age 8-23) that completed a fractal n-back WM task during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore, high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance of multilevel environmental factors in shaping executive system function and WM in youth.
Assuntos
Função Executiva , Memória de Curto Prazo , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Escolaridade , Pais , Imageamento por Ressonância Magnética/métodos , Classe Social , Encéfalo/fisiologiaRESUMO
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a multisystem disorder associated with multiple congenital anomalies, variable medical features, and neurodevelopmental differences resulting in diverse psychiatric phenotypes, including marked deficits in facial memory and social cognition. Neuroimaging in individuals with 22q11.2DS has revealed differences relative to matched controls in BOLD fMRI activation during facial affect processing tasks. However, time-varying interactions between brain areas during facial affect processing have not yet been studied with BOLD fMRI in 22q11.2DS. We applied constrained principal component analysis to identify temporally overlapping brain activation patterns from BOLD fMRI data acquired during an emotion identification task from 58 individuals with 22q11.2DS and 58 age-, race-, and sex-matched healthy controls. Delayed frontal-motor feedback signals were diminished in individuals with 22q11.2DS, as were delayed emotional memory signals engaging amygdala, hippocampus, and entorhinal cortex. Early task-related engagement of motor and visual cortices and salience-related insular activation were relatively preserved in 22q11.2DS. Insular activation was associated with task performance within the 22q11.2DS sample. Differences in cortical surface area, but not cortical thickness, showed spatial alignment with an activation pattern associated with face processing. These findings suggest that relative to matched controls, primary visual processing and insular function are relatively intact in individuals with 22q11.22DS, while motor feedback, face processing, and emotional memory processes are more affected. Such insights may help inform potential interventional targets and enhance the specificity of neuroimaging indices of cognitive dysfunction in 22q11.2DS.
Assuntos
Síndrome de DiGeorge , Encéfalo , Deleção Cromossômica , Cromossomos , Síndrome de DiGeorge/genética , Expressão Facial , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Negative symptoms and cognitive deficits contribute strongly to disability in schizophrenia, and are resistant to existing medications. Recent drug development has targeted enhanced NMDA function by increasing mGluR2/3 signaling. However, the clinical utility of such agents remains uncertain, and markers of brain circuit function are critical for clarifying mechanisms and understanding individual differences in efficacy. We conducted a double-blind, placebo-controlled, randomized cross-over (14 day washout) pilot study evaluating adjunctive use of the mGluR2 positive allosteric modulator AZD8529 (80 mg daily for 3 days), in chronic stable patients with schizophrenia (n = 26 analyzed). We focused on 3 T fMRI response in frontostriatal regions during an n-back working memory task, testing the hypothesis that AZD8529 produces fMRI changes that correlate with improvement in negative symptoms and cognition. We found that AZD8529 did not produce significant group-average effects on symptoms or cognitive accuracy. However, AZD8529 did increase n-back fMRI activation in striatum (p < 0.0001) and anterior cingulate/paracingulate (p = 0.002). Greater drug-versus-placebo effects on caudate activation significantly correlated with greater reductions in PANSS negative symptom scores (r = -0.42, p = 0.031), and exploratory correlations suggested broader effects across multiple symptom domains and regions of interest. These findings demonstrate that fMRI responses to mGluR2 positive modulation relate to individual differences in symptom reduction, and could be pursued for future biomarker development. Negative clinical results at the group level should not lead to premature termination of investigation of this mechanism, which may benefit an important subset of individuals with schizophrenia. Imaging biomarkers may reveal therapeutic mechanisms, and help guide treatment toward specific populations.
Assuntos
Antipsicóticos , Receptores de Glutamato Metabotrópico , Esquizofrenia , Antipsicóticos/uso terapêutico , Método Duplo-Cego , Humanos , Memória de Curto Prazo , Projetos Piloto , Esquizofrenia/tratamento farmacológicoRESUMO
OBJECTIVES: Data from neurocognitive assessments may not be accurate in the context of factors impacting validity, such as disengagement, unmotivated responding, or intentional underperformance. Performance validity tests (PVTs) were developed to address these phenomena and assess underperformance on neurocognitive tests. However, PVTs can be burdensome, rely on cutoff scores that reduce information, do not examine potential variations in task engagement across a battery, and are typically not well-suited to acquisition of large cognitive datasets. Here we describe the development of novel performance validity measures that could address some of these limitations by leveraging psychometric concepts using data embedded within the Penn Computerized Neurocognitive Battery (PennCNB). METHODS: We first developed these validity measures using simulations of invalid response patterns with parameters drawn from real data. Next, we examined their application in two large, independent samples: 1) children and adolescents from the Philadelphia Neurodevelopmental Cohort (n = 9498); and 2) adult servicemembers from the Marine Resiliency Study-II (n = 1444). RESULTS: Our performance validity metrics detected patterns of invalid responding in simulated data, even at subtle levels. Furthermore, a combination of these metrics significantly predicted previously established validity rules for these tests in both developmental and adult datasets. Moreover, most clinical diagnostic groups did not show reduced validity estimates. CONCLUSIONS: These results provide proof-of-concept evidence for multivariate, data-driven performance validity metrics. These metrics offer a novel method for determining the performance validity for individual neurocognitive tests that is scalable, applicable across different tests, less burdensome, and dimensional. However, more research is needed into their application.
Assuntos
Benchmarking , Simulação de Doença , Adulto , Adolescente , Criança , Humanos , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Testes de Estado Mental e Demência , Psicometria , Simulação de Doença/diagnósticoRESUMO
BACKGROUND: Impairment in intrinsic motivation (IM), the drive to satisfy internal desires like mastery, may play a key role in disability in psychosis. However, we have limited knowledge regarding relative impairments in IM compared to extrinsic motivation (EM) or general motivation (GM), in part due to limitations in existing measures. METHODS: Here we address this gap using a novel Trait Intrinsic and Extrinsic Motivation self-report scale in a sample of n = 243 participants including those with schizophrenia, psychosis-risk, and healthy controls. Each of the 7 IM and 6 EM items used a 7-point Likert scale assessing endorsement of dispositional statements. Bifactor analyses of these items yielded distinct IM, EM, and GM factor scores. Convergent and discriminant validity were examined in relation to General Causality Orientation Scale (GCOS-CP) and Quality of Life 3-item IM measure (QLS-IM). Utility was assessed in relation to psychosis-spectrum (PS) status and CAINS clinical amotivation. RESULTS: IM and EM showed acceptable inter-item consistency (IM: α = 0.88; EM: α = 0.66); the bifactor model exhibited fit that varied from good to borderline to inadequate depending on the specific fit metric (SRMR = 0.038, CFI = 0.94, RMSEA = 0.106 ± 0.014). IM scores correlated with established IM measures: GCOS-CP Autonomy (rho = 0.38, p < 0.01) and QLS-IM (rho = 0.29, p < 0.01). Supporting discriminant validity, IM did not correlate with GCOS-CP Control (rho = -0.14, p > 0.05). Two-year stability in an available longitudinal subset (n = 35) was strong (IM: rho = 0.64, p < 0.01; EM: rho = 0.55, p < 0.01). Trait IM was lower in PS youth (t = 4.24, p < 0.01), and correlated with clinical amotivation (rho = -0.36, p < 0.01); EM did not show significant clinical associations. CONCLUSIONS: These results demonstrate the clinical relevance of IM in psychosis risk. They also provide preliminary support for the reliability, validity and utility of this new Trait IM-EM scale, which addresses a measurement gap and can facilitate identification of neurobehavioral and clinical correlates of IM deficits.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Adolescente , Motivação , Reprodutibilidade dos Testes , Qualidade de Vida , Transtornos Psicóticos/diagnóstico , Esquizofrenia/diagnóstico , PsicometriaRESUMO
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Assuntos
Tonsila do Cerebelo/patologia , Corpo Estriado/patologia , Hipocampo/patologia , Neuroimagem , Esquizofrenia/patologia , Tálamo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagemRESUMO
BACKGROUND: In the medical imaging domain, deep learning-based methods have yet to see widespread clinical adoption, in part due to limited generalization performance across different imaging devices and acquisition protocols. The deviation between estimated brain age and biological age is an established biomarker of brain health and such models may benefit from increased cross-site generalizability. PURPOSE: To develop and evaluate a deep learning-based image harmonization method to improve cross-site generalizability of deep learning age prediction. STUDY TYPE: Retrospective. POPULATION: Eight thousand eight hundred and seventy-six subjects from six sites. Harmonization models were trained using all subjects. Age prediction models were trained using 2739 subjects from a single site and tested using the remaining 6137 subjects from various other sites. FIELD STRENGTH/SEQUENCE: Brain imaging with magnetization prepared rapid acquisition with gradient echo or spoiled gradient echo sequences at 1.5 T and 3 T. ASSESSMENT: StarGAN v2, was used to perform a canonical mapping from diverse datasets to a reference domain to reduce site-based variation while preserving semantic information. Generalization performance of deep learning age prediction was evaluated using harmonized, histogram matched, and unharmonized data. STATISTICAL TESTS: Mean absolute error (MAE) and Pearson correlation between estimated age and biological age quantified the performance of the age prediction model. RESULTS: Our results indicated a substantial improvement in age prediction in out-of-sample data, with the overall MAE improving from 15.81 (±0.21) years to 11.86 (±0.11) with histogram matching to 7.21 (±0.22) years with generative adversarial network (GAN)-based harmonization. In the multisite case, across the 5 out-of-sample sites, MAE improved from 9.78 (±6.69) years to 7.74 (±3.03) years with histogram normalization to 5.32 (±4.07) years with GAN-based harmonization. DATA CONCLUSION: While further research is needed, GAN-based medical image harmonization appears to be a promising tool for improving cross-site deep learning generalization. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 1.
Assuntos
Aprendizado Profundo , Adolescente , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Projetos de Pesquisa , Estudos RetrospectivosRESUMO
Low reward responsiveness (RR) is associated with poor psychological well-being, psychiatric disorder risk, and psychotropic treatment resistance. Functional MRI studies have reported decreased activity within the brain's reward network in individuals with RR deficits, however the neurochemistry underlying network hypofunction in those with low RR remains unclear. This study employed ultra-high field glutamate chemical exchange saturation transfer (GluCEST) imaging to investigate the hypothesis that glutamatergic deficits within the reward network contribute to low RR. GluCEST images were acquired at 7.0 T from 45 participants (ages 15-29, 30 females) including 15 healthy individuals, 11 with depression, and 19 with psychosis spectrum symptoms. The GluCEST contrast, a measure sensitive to local glutamate concentration, was quantified in a meta-analytically defined reward network comprised of cortical, subcortical, and brainstem regions. Associations between brain GluCEST contrast and Behavioral Activation System Scale RR scores were assessed using multiple linear regressions. Analyses revealed that reward network GluCEST contrast was positively and selectively associated with RR, but not other clinical features. Follow-up investigations identified that this association was driven by the subcortical reward network and network areas that encode the salience of valenced stimuli. We observed no association between RR and the GluCEST contrast within non-reward cortex. This study thus provides new evidence that reward network glutamate levels contribute to individual differences in RR. Decreased reward network excitatory neurotransmission or metabolism may be mechanisms driving reward network hypofunction and RR deficits. These findings provide a framework for understanding the efficacy of glutamate-modulating psychotropics such as ketamine for treating anhedonia.
Assuntos
Ácido Glutâmico , Transtornos Psicóticos , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Recompensa , Adulto JovemRESUMO
The parieto-frontal integration theory (PFIT) identified a fronto-parietal network of regions where individual differences in brain parameters most strongly relate to cognitive performance. PFIT was supported and extended in adult samples, but not in youths or within single-scanner well-powered multimodal studies. We performed multimodal neuroimaging in 1601 youths age 8-22 on the same 3-Tesla scanner with contemporaneous neurocognitive assessment, measuring volume, gray matter density (GMD), mean diffusivity (MD), cerebral blood flow (CBF), resting-state functional magnetic resonance imaging measures of the amplitude of low frequency fluctuations (ALFFs) and regional homogeneity (ReHo), and activation to a working memory and a social cognition task. Across age and sex groups, better performance was associated with higher volumes, greater GMD, lower MD, lower CBF, higher ALFF and ReHo, and greater activation for the working memory task in PFIT regions. However, additional cortical, striatal, limbic, and cerebellar regions showed comparable effects, hence PFIT needs expansion into an extended PFIT (ExtPFIT) network incorporating nodes that support motivation and affect. Associations of brain parameters became stronger with advancing age group from childhood to adolescence to young adulthood, effects occurring earlier in females. This ExtPFIT network is developmentally fine-tuned, optimizing abundance and integrity of neural tissue while maintaining a low resting energy state.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Cognição Social , Adolescente , Criança , Feminino , Humanos , Masculino , Imagem Multimodal/métodos , Neuroimagem/métodos , Adulto JovemRESUMO
Adolescence is a time of extensive neural restructuring, leaving one susceptible to atypical development. Although neural maturation in humans can be measured using functional and structural MRI, the subtle patterns associated with the initial stages of abnormal change may be difficult to identify, particularly at an individual level. Brain age prediction models may have utility in assessing brain development in an individualized manner, as deviations between chronological age and predicted brain age could reflect one's divergence from typical development. Here, we built a support vector regression model to summarize high-dimensional neuroimaging as an index of brain age in both sexes. Using structural and functional MRI data from two large pediatric datasets and a third clinical dataset, we produced and validated a two-dimensional neural maturation index (NMI) that characterizes typical brain maturation patterns and identifies those who deviate from this trajectory. Examination of brain signatures associated with NMI scores revealed that elevated scores were related to significantly lower gray matter volume and significantly higher white matter volume, particularly in high-order regions such as the prefrontal cortex. Additionally, those with higher NMI scores exhibited enhanced connectivity in several functional brain networks, including the default mode network. Analysis of data from a sample of male and female patients with schizophrenia revealed an association between advanced NMI scores and schizophrenia diagnosis in participants aged 16-22, confirming the NMI's utility as a marker of atypicality. Altogether, our findings support the NMI as an individualized, interpretable measure by which neural development in adolescence may be assessed.SIGNIFICANCE STATEMENT The substantial neural restructuring that occurs during adolescence increases one's vulnerability to aberration. A brain index that is capable of capturing one's conformance with typical development will allow for individualized assessment and enhance our understanding of typical and atypical development. In this analysis, we produce a neural maturation index (NMI) using support vector regression and a large pediatric sample. This index generalizes across multiple cohorts and shows potential in the identification of clinical groups. We also implement a novel method for examining the developmental trajectory through data-driven analysis. The signatures identified by the NMI reflect key stages of the extensive neural development that occurs during adolescence and support its utility as a metric of typical brain development.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Esquizofrenia/diagnóstico por imagem , Máquina de Vetores de Suporte , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto JovemRESUMO
Brain iron is vital to multiple aspects of brain function, including oxidative metabolism, myelination, and neurotransmitter synthesis. Atypical iron concentration in the basal ganglia is associated with neurodegenerative disorders in aging and cognitive deficits. However, the normative development of brain iron concentration in adolescence and its relationship to cognition are less well understood. Here, we address this gap in a longitudinal sample of 922 humans aged 8-26 years at the first visit (M = 15.1, SD = 3.72; 336 males, 486 females) with up to four multiecho T2* scans each. Using this sample of 1236 imaging sessions, we assessed the longitudinal developmental trajectories of tissue iron in the basal ganglia. We quantified tissue iron concentration using R2* relaxometry within four basal ganglia regions, including the caudate, putamen, nucleus accumbens, and globus pallidus. The longitudinal development of R2* was modeled using generalized additive mixed models (GAMMs) with splines to capture linear and nonlinear developmental processes. We observed significant increases in R2* across all regions, with the greatest and most prolonged increases occurring in the globus pallidus and putamen. Further, we found that the developmental trajectory of R2* in the putamen is significantly related to individual differences in cognitive ability, such that greater cognitive ability is increasingly associated with greater iron concentration through late adolescence and young-adulthood. Together, our results suggest a prolonged period of basal ganglia iron enrichment that extends into the mid-twenties, with diminished iron concentration associated with poorer cognitive ability during late adolescence.SIGNIFICANCE STATEMENT Brain tissue iron is essential to healthy brain function. Atypical basal ganglia tissue iron levels have been linked to impaired cognition in iron deficient children and adults with neurodegenerative disorders. However, the normative developmental trajectory of basal ganglia iron concentration during adolescence and its association with cognition are less well understood. In the largest study of tissue iron development yet reported, we characterize the developmental trajectory of tissue iron concentration across the basal ganglia during adolescence and provide evidence that diminished iron content is associated with poorer cognitive performance even in healthy youth. These results highlight the transition from adolescence to adulthood as a period of dynamic maturation of tissue iron concentration in the basal ganglia.
Assuntos
Química Encefálica/fisiologia , Cognição/fisiologia , Ferro/metabolismo , Adolescente , Adulto , Envelhecimento/metabolismo , Envelhecimento/psicologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Desempenho Psicomotor , Adulto JovemRESUMO
Neurobiological heterogeneity in schizophrenia is poorly understood and confounds current analyses. We investigated neuroanatomical subtypes in a multi-institutional multi-ethnic cohort, using novel semi-supervised machine learning methods designed to discover patterns associated with disease rather than normal anatomical variation. Structural MRI and clinical measures in established schizophrenia (n = 307) and healthy controls (n = 364) were analysed across three sites of PHENOM (Psychosis Heterogeneity Evaluated via Dimensional Neuroimaging) consortium. Regional volumetric measures of grey matter, white matter, and CSF were used to identify distinct and reproducible neuroanatomical subtypes of schizophrenia. Two distinct neuroanatomical subtypes were found. Subtype 1 showed widespread lower grey matter volumes, most prominent in thalamus, nucleus accumbens, medial temporal, medial prefrontal/frontal and insular cortices. Subtype 2 showed increased volume in the basal ganglia and internal capsule, and otherwise normal brain volumes. Grey matter volume correlated negatively with illness duration in Subtype 1 (r = -0.201, P = 0.016) but not in Subtype 2 (r = -0.045, P = 0.652), potentially indicating different underlying neuropathological processes. The subtypes did not differ in age (t = -1.603, df = 305, P = 0.109), sex (chi-square = 0.013, df = 1, P = 0.910), illness duration (t = -0.167, df = 277, P = 0.868), antipsychotic dose (t = -0.439, df = 210, P = 0.521), age of illness onset (t = -1.355, df = 277, P = 0.177), positive symptoms (t = 0.249, df = 289, P = 0.803), negative symptoms (t = 0.151, df = 289, P = 0.879), or antipsychotic type (chi-square = 6.670, df = 3, P = 0.083). Subtype 1 had lower educational attainment than Subtype 2 (chi-square = 6.389, df = 2, P = 0.041). In conclusion, we discovered two distinct and highly reproducible neuroanatomical subtypes. Subtype 1 displayed widespread volume reduction correlating with illness duration, and worse premorbid functioning. Subtype 2 had normal and stable anatomy, except for larger basal ganglia and internal capsule, not explained by antipsychotic dose. These subtypes challenge the notion that brain volume loss is a general feature of schizophrenia and suggest differential aetiologies. They can facilitate strategies for clinical trial enrichment and stratification, and precision diagnostics.
Assuntos
Substância Cinzenta/patologia , Aprendizado de Máquina , Esquizofrenia/classificação , Esquizofrenia/patologia , Substância Branca/patologia , Adulto , Atrofia/patologia , Encéfalo/patologia , Estudos de Casos e Controles , Escolaridade , Feminino , Humanos , Hipertrofia/patologia , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Esquizofrenia/líquido cefalorraquidiano , Adulto JovemRESUMO
As medical imaging enters its information era and presents rapidly increasing needs for big data analytics, robust pooling and harmonization of imaging data across diverse cohorts with varying acquisition protocols have become critical. We describe a comprehensive effort that merges and harmonizes a large-scale dataset of 10,477 structural brain MRI scans from participants without a known neurological or psychiatric disorder from 18 different studies that represent geographic diversity. We use this dataset and multi-atlas-based image processing methods to obtain a hierarchical partition of the brain from larger anatomical regions to individual cortical and deep structures and derive age trends of brain structure through the lifespan (3-96 years old). Critically, we present and validate a methodology for harmonizing this pooled dataset in the presence of nonlinear age trends. We provide a web-based visualization interface to generate and present the resulting age trends, enabling future studies of brain structure to compare their data with this reference of brain development and aging, and to examine deviations from ranges, potentially related to disease.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Conjuntos de Dados como Assunto , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto , Neuroimagem/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atlas como Assunto , Criança , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Neuroimagem/normas , Reprodutibilidade dos Testes , Adulto JovemRESUMO
Adolescence is characterized by both maturation of brain structure and increased risk of negative outcomes from behaviors associated with impulsive decision-making. One important index of impulsive choice is delay discounting (DD), which measures the tendency to prefer smaller rewards available soon over larger rewards delivered after a delay. However, it remains largely unknown how individual differences in structural brain development may be associated with impulsive choice during adolescence. Leveraging a unique large sample of 427 human youths (208 males and 219 females) imaged as part of the Philadelphia Neurodevelopmental Cohort, we examined associations between delay discounting and cortical thickness within structural covariance networks. These structural networks were derived using non-negative matrix factorization, an advanced multivariate technique for dimensionality reduction, and analyzed using generalized additive models with penalized splines to capture both linear and nonlinear developmental effects. We found that impulsive choice, as measured by greater discounting, was most strongly associated with diminished cortical thickness in structural brain networks that encompassed the ventromedial prefrontal cortex, orbitofrontal cortex, temporal pole, and temporoparietal junction. Furthermore, structural brain networks predicted DD above and beyond cognitive performance. Together, these results suggest that reduced cortical thickness in regions known to be involved in value-based decision-making is a marker of impulsive choice during the critical period of adolescence.SIGNIFICANCE STATEMENT Risky behaviors during adolescence, such as initiation of substance use or reckless driving, are a major source of morbidity and mortality. In this study, we present evidence from a large sample of youths that diminished cortical thickness in specific structural brain networks is associated with impulsive choice. Notably, the strongest association between impulsive choice and brain structure was seen in regions implicated in value-based decision-making; namely, the ventromedial prefrontal and orbitofrontal cortices. Moving forward, such neuroanatomical markers of impulsivity may aid in the development of personalized interventions targeted to reduce risk of negative outcomes resulting from impulsivity during adolescence.