Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Biol Chem ; 299(3): 102968, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736898

RESUMO

Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and ß (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and ß cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.


Assuntos
Chlamydomonas reinhardtii , Grupo dos Citocromos b , Complexo de Proteína do Fotossistema II , Rubredoxinas , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Heme/metabolismo , Ferro/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
2.
Plant Cell ; 33(5): 1706-1727, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33625514

RESUMO

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in all photosynthetic organisms and is a key enzyme for photosynthesis-driven life on Earth. Its most prominent form is a hetero-oligomer in which small subunits (SSU) stabilize the core of the enzyme built from large subunits (LSU), yielding, after a chaperone-assisted multistep assembly process, an LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii and a combination of site-directed mutants to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU are associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis, in which LSU translation is controlled by its ability to assemble with the SSU, via the mechanism of control by epistasy of synthesis (CES). Altogether this leads us to propose a model whereby the last assembly intermediate, an LSU8-RAF1 complex, provides the platform for SSU binding to form the Rubisco enzyme, and when SSU is not available, converts to a key regulatory form that exerts negative feedback on the initiation of LSU translation.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Biossíntese de Proteínas , Multimerização Proteica , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Regiões 5' não Traduzidas/genética , Regulação para Baixo , Modelos Biológicos , Mutação/genética , Ligação Proteica , Estabilidade Proteica , Ribulose-Bifosfato Carboxilase/genética
3.
Plant Cell ; 32(4): 1179-1203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988263

RESUMO

In the green alga Chlamydomonas (Chlamydomonas r einhardtii), chloroplast gene expression is tightly regulated posttranscriptionally by gene-specific trans-acting protein factors. Here, we report the identification of the octotricopeptide repeat protein MTHI1, which is critical for the biogenesis of chloroplast ATP synthase oligomycin-sensitive chloroplast coupling factor. Unlike most trans-acting factors characterized so far in Chlamydomonas, which control the expression of a single gene, MTHI1 targets two distinct transcripts: it is required for the accumulation and translation of atpH mRNA, encoding a subunit of the selective proton channel, but it also enhances the translation of atpI mRNA, which encodes the other subunit of the channel. MTHI1 targets the 5' untranslated regions of both the atpH and atpI genes. Coimmunoprecipitation and small RNA sequencing revealed that MTHI1 binds specifically a sequence highly conserved among Chlorophyceae and the Ulvale clade of Ulvophyceae at the 5' end of triphosphorylated atpH mRNA. A very similar sequence, located ∼60 nucleotides upstream of the atpI initiation codon, was also found in some Chlorophyceae and Ulvale algae species and is essential for atpI mRNA translation in Chlamydomonas. Such a dual-targeted trans-acting factor provides a means to coregulate the expression of the two proton hemi-channels.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , ATPases de Cloroplastos Translocadoras de Prótons/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Subunidades Proteicas/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Sequência de Bases , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Genes Reporter , Teste de Complementação Genética , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Subunidades Proteicas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Plant Cell Physiol ; 63(1): 70-81, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34592750

RESUMO

The unicellular green alga, Chlamydomonas reinhardtii, contains many light-harvesting complexes (LHCs) associating chlorophylls a/b and carotenoids; the major LHCIIs (types I, II, III and IV) and minor light-harvesting complexes, CP26 and CP29, for photosystem II, as well as nine LHCIs (LHCA1-9), for photosystem I. A pale green mutant BF4 exhibited impaired accumulation of LHCs due to deficiency in the Alb3.1 gene, which encodes the insertase involved in insertion, folding and assembly of LHC proteins in the thylakoid membranes. To elucidate the molecular mechanism by which ALB3.1 assists LHC assembly, we complemented BF4 to express ALB3.1 fused with no, single or triple Human influenza hemagglutinin (HA) tag at its C-terminus (cAlb3.1, cAlb3.1-HA or cAlb3.1-3HA). The resulting complemented strains accumulated most LHC proteins comparable to wild-type (WT) levels. The affinity purification of Alb3.1-HA and Alb3.1-3HA preparations showed that ALB3.1 interacts with cpSRP43 and cpSRP54 proteins of the chloroplast signal recognition particle (cpSRP) and several LHC proteins; two major LHCII proteins (types I and III), two minor LHCII proteins (CP26 and CP29) and eight LHCI proteins (LHCA1, 2, 3, 4, 5, 6, 8 and 9). Pulse-chase labeling experiments revealed that the newly synthesized major LHCII proteins were transiently bound to the Alb3.1 complex. We propose that Alb3.1 interacts with cpSRP43 and cpSRP54 to form an assembly apparatus for most LHCs in the thylakoid membranes. Interestingly, photosystem I (PSI) proteins were also detected in the Alb3.1 preparations, suggesting that the integration of LHCIs to a PSI core complex to form a PSI-LHCI subcomplex occurs before assembled LHCIs dissociate from the Alb3.1-cpSRP complex.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
5.
J Exp Bot ; 73(1): 245-262, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436580

RESUMO

While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.


Assuntos
Chlamydomonas , Complexo de Proteína do Fotossistema II , Chlamydomonas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(43): 21900-21906, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591197

RESUMO

In plants, algae, and some photosynthetic bacteria, the ElectroChromic Shift (ECS) of photosynthetic pigments, which senses the electric field across photosynthetic membranes, is widely used to quantify the activity of the photosynthetic chain. In cyanobacteria, ECS signals have never been used for physiological studies, although they can provide a unique tool to study the architecture and function of the respiratory and photosynthetic electron transfer chains, entangled in the thylakoid membranes. Here, we identified bona fide ECS signals, likely corresponding to carotenoid band shifts, in the model cyanobacteria Synechococcus elongatus PCC7942 and Synechocystis sp. PCC6803. These band shifts, most likely originating from pigments located in photosystem I, have highly similar spectra in the 2 species and can be best measured as the difference between the absorption changes at 500 to 505 nm and the ones at 480 to 485 nm. These signals respond linearly to the electric field and display the basic kinetic features of ECS as characterized in other organisms. We demonstrate that these probes are an ideal tool to study photosynthetic physiology in vivo, e.g., the fraction of PSI centers that are prebound by plastocyanin/cytochrome c6 in darkness (about 60% in both cyanobacteria, in our experiments), the conductivity of the thylakoid membrane (largely reflecting the activity of the ATP synthase), or the steady-state rates of the photosynthetic electron transport pathways.


Assuntos
Synechococcus/metabolismo , Tilacoides/metabolismo , Transporte de Elétrons , Eletrofisiologia , Potenciais da Membrana , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/metabolismo
7.
Nature ; 582(7813): 488, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32576999
8.
Plant J ; 98(6): 1033-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30809889

RESUMO

In Chlamydomonas reinhardtii, chloroplast gene expression is tightly regulated post-transcriptionally by gene-specific trans-acting protein factors. Here, we report the molecular identification of an OctotricoPeptide Repeat (OPR) protein, MDA1, which governs the maturation and accumulation of the atpA transcript, encoding subunit α of the chloroplast ATP synthase. As does TDA1, another OPR protein required for the translation of the atpA mRNA, MDA1 targets the atpA 5'-untranslated region (UTR). Unexpectedly, it binds within a region of approximately 100 nt in the middle of the atpA 5'-UTR, at variance with the stabilization factors characterized so far, which bind to the 5'-end of their target mRNA to protect it from 5' → 3' exonucleases. It binds the same region as TDA1, with which it forms a high-molecular-weight complex that also comprises the atpA mRNA. This complex dissociates upon translation, promoting degradation of the atpA mRNA. We suggest that atpA transcripts, once translated, enter the degradation pathway because they cannot reassemble with MDA1 and TDA1, which preferentially bind to de novo transcribed mRNAs.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Proteínas de Plantas/metabolismo , Estabilidade de RNA , Regiões 5' não Traduzidas/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/genética , ATPases de Cloroplastos Translocadoras de Prótons/genética , Cloroplastos/metabolismo , Modelos Biológicos , Complexos Multiproteicos , Mutação , Proteínas de Plantas/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética
9.
Anal Chem ; 92(11): 7532-7539, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352279

RESUMO

Microbial solar cells that mainly rely on the use of photosynthesic organisms are a promising alternative to photovoltaics for solar electricity production. In that way, we propose a new approach involving electrochemistry and fluorescence techniques. The coupled setup Electro-Pulse-Amplitude-Modulation ("e-PAM") enables the simultaneous recording of the produced photocurrent and fluorescence signals from the photosynthetic chain. This methodology was validated with a suspension of green alga Chlamydomonas reinhardtii in interaction with an exogenous redox mediator (2,6-dichlorobenzoquinone; DCBQ). The balance between photosynthetic chain events (PSII photochemical yield, quenching) and the extracted electricity can be monitored overtime. More particularly, the nonphotochemical quenching induced by DCBQ mirrors the photocurrent. This setup thus helps to distinguish the electron harvesting from some side effects due to quinones in real time. It therefore paves the way for future analyses devoted to the choice of the experimental conditions (redox mediator, photosynthetic organisms, and so on) to find the best electron extraction.


Assuntos
Fontes de Energia Bioelétrica , Chlamydomonas reinhardtii/metabolismo , Técnicas Eletroquímicas , Energia Solar , Técnicas Eletroquímicas/instrumentação , Elétrons
10.
Plant Physiol ; 179(2): 718-731, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530737

RESUMO

Many photosynthetic autotrophs have evolved responses that adjust their metabolism to limitations in nutrient availability. Here we report a detailed characterization of the remodeling of photosynthesis upon sulfur starvation under heterotrophy and photo-autotrophy in the green alga (Chlamydomonas reinhardtii). Photosynthetic inactivation under low light and darkness is achieved through specific degradation of Rubisco and cytochrome b 6 f and occurs only in the presence of reduced carbon in the medium. The process is likely regulated by nitric oxide (NO), which is produced 24 h after the onset of starvation, as detected with NO-sensitive fluorescence probes visualized by fluorescence microscopy. We provide pharmacological evidence that intracellular NO levels govern this degradation pathway: the addition of a NO scavenger decreases the rate of cytochrome b 6 f and Rubisco degradation, whereas NO donors accelerate the degradation. Based on our analysis of the relative contribution of the different NO synthesis pathways, we conclude that the NO2-dependent nitrate reductase-independent pathway is crucial for NO production under sulfur starvation. Our data argue for an active role for NO in the remodeling of thylakoid protein complexes upon sulfur starvation.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Óxido Nítrico/metabolismo , Fotossíntese/fisiologia , Enxofre/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Proteínas de Cloroplastos/metabolismo , Complexo Citocromos b6f/metabolismo , Luz , Doadores de Óxido Nítrico/farmacologia , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Transdução de Sinais
11.
Plant Physiol ; 179(2): 630-639, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498023

RESUMO

Whereas photosynthetic function under steady-state light conditions has been well characterized, little is known about its changes that occur in response to light fluctuations. Chlororespiration, a simplified respiratory chain, is widespread across all photosynthetic lineages, but its role remains elusive. Here, we show that chlororespiration plays a crucial role in intermittent-light conditions in the green alga Chlamydomonas reinhardtii Chlororespiration, which is localized in thylakoid membranes together with the photosynthetic electron transfer chain, involves plastoquinone reduction and plastoquinol oxidation by a Plastid Terminal Oxidase (PTOX). We show that PTOX activity is critical for growth under intermittent light, with severe growth defects being observed in a mutant lacking PTOX2, the major plastoquinol oxidase. We demonstrate that the hampered growth results from a major change in the kinetics of redox relaxation of the photosynthetic electron transfer chain during the dark periods. This change, in turn, has a dramatic effect on the physiology of photosynthesis during the light periods, notably stimulating cyclic electron flow at the expense of the linear electron flow.


Assuntos
Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/metabolismo , Escuridão , Transporte de Elétrons , Luz , Mutação , Oxirredução , Oxirredutases/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Tilacoides/metabolismo , Regulação para Cima
12.
Plant Physiol ; 181(4): 1480-1497, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604811

RESUMO

Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent Ser endopeptidases that perform key aspects of protein quality control in all domains of life. Here, we characterized Chlamydomonas reinhardtii DEG1C, which together with DEG1A and DEG1B is orthologous to Arabidopsis (Arabidopsis thaliana) Deg1 in the thylakoid lumen. We show that DEG1C is localized to the stroma and the periphery of thylakoid membranes. Purified DEG1C exhibited high proteolytic activity against unfolded model substrates and its activity increased with temperature and pH. DEG1C forms monomers, trimers, and hexamers that are in dynamic equilibrium. DEG1C protein levels increased upon nitrogen, sulfur, and phosphorus starvation; under heat, oxidative, and high light stress; and when Sec-mediated protein translocation was impaired. DEG1C depletion was not associated with any obvious aberrant phenotypes under nonstress conditions, high light exposure, or heat stress. However, quantitative shotgun proteomics revealed differences in the abundance of 307 proteins between a deg1c knock-out mutant and the wild type under nonstress conditions. Among the 115 upregulated proteins are PSII biogenesis factors, FtsH proteases, and proteins normally involved in high light responses, including the carbon dioxide concentrating mechanism, photorespiration, antioxidant defense, and photoprotection. We propose that the lack of DEG1C activity leads to a physiological state of the cells resembling that induced by high light intensities and therefore triggers high light protection responses.


Assuntos
Aclimatação/efeitos da radiação , Chlamydomonas/genética , Chlamydomonas/efeitos da radiação , Luz , Mutação/genética , Proteínas de Plantas/genética , Acetatos/metabolismo , Concentração de Íons de Hidrogênio , Modelos Biológicos , Fenótipo , Fotossíntese/efeitos da radiação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Dobramento de Proteína/efeitos da radiação , Multimerização Proteica , Proteólise/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Especificidade por Substrato/efeitos da radiação , Temperatura , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
13.
J Biol Chem ; 293(45): 17559-17573, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228184

RESUMO

The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo de Proteína do Fotossistema I/genética
14.
Plant J ; 94(6): 1023-1037, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602195

RESUMO

The GreenCut encompasses a suite of nucleus-encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non-photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (Conserved in Plant Lineage and Diatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high-light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6 f complex (Cytb6 f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6 f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6 f complex. Based on motifs of CPLD49 and the activities of other CPLD49-like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6 f.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/metabolismo , Tilacoides/metabolismo , Carotenoides/metabolismo , Transporte de Elétrons , Fotossíntese
15.
Nucleic Acids Res ; 45(18): 10783-10799, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985404

RESUMO

In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNAs. Their absence in M-factor mutants reflects the protection of transcript 5' end by the cognate factor. Enzymatic removal of 5'-triphosphates allowed identifying those cosRNA that mark a transcription start site. We detected another class of sRNAs derived from low abundance transcripts, antisense to mRNAs. The formation of antisense sRNAs required the presence of the complementary mRNA and was stimulated when translation was inhibited by chloramphenicol or lincomycin. We propose that they derive from degradation of double-stranded RNAs generated by pairing of antisense and sense transcripts, a process normally hindered by the traveling of the ribosomes. In addition, chloramphenicol treatment, by freezing ribosomes on the mRNA, caused the accumulation of 32-34 nt ribosome-protected fragments. Using this 'in vivo ribosome footprinting', we identified the function and molecular target of two candidate trans-acting factors.


Assuntos
Chlamydomonas reinhardtii/genética , RNA de Cloroplastos/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transcriptoma , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Perfilação da Expressão Gênica , Inibidores da Síntese de Ácido Nucleico/farmacologia , Processos Fototróficos , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA , Transcrição Gênica/efeitos dos fármacos
16.
Traffic ; 17(12): 1322-1328, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620857

RESUMO

Primary endosymbiosis, which gave rise to mitochondria or chloroplasts, required successful targeting of a number of proteins from the host cytosol to the endosymbiotic organelles. A survey of studies published in separate fields of biological research over the past 40 years argues for an antimicrobial origin of targeting peptides. It is proposed that mitochondria and chloroplast derive from microbes that developed a resistance strategy to antimicrobial peptides that consisted in their rapid internalization and proteolytic disposal by microbial peptidases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Evolução Molecular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Citosol/química , Citosol/metabolismo , Células Eucarióticas/metabolismo , Interações Hospedeiro-Patógeno , Mitocôndrias/genética , Membranas Mitocondriais , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Células Procarióticas/metabolismo , Transporte Proteico , Simbiose
17.
Plant Mol Biol ; 96(6): 641-653, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29600502

RESUMO

KEY MESSAGE: Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5' end maturation is thought to be achieved by the combined action of a 5' exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5' exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5' exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5' exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Cloroplastos/enzimologia , Exorribonucleases/metabolismo , Ribonucleases/metabolismo , Sequência de Aminoácidos , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Exorribonucleases/genética , RNA de Cloroplastos/genética , RNA de Cloroplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Homologia de Sequência de Aminoácidos
18.
Plant Cell ; 27(4): 984-1001, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804537

RESUMO

We characterized two spontaneous and dominant nuclear mutations in the unicellular alga Chlamydomonas reinhardtii, ncc1 and ncc2 (for nuclear control of chloroplast gene expression), which affect two octotricopeptide repeat (OPR) proteins encoded in a cluster of paralogous genes on chromosome 15. Both mutations cause a single amino acid substitution in one OPR repeat. As a result, the mutated NCC1 and NCC2 proteins now recognize new targets that we identified in the coding sequences of the chloroplast atpA and petA genes, respectively. Interaction of the mutated proteins with these targets leads to transcript degradation; however, in contrast to the ncc1 mutation, the ncc2 mutation requires on-going translation to promote the decay of the petA mRNA. Thus, these mutants reveal a mechanism by which nuclear factors act on chloroplast mRNAs in Chlamydomonas. They illustrate how diversifying selection can allow cells to adapt the nuclear control of organelle gene expression to environmental changes. We discuss these data in the wider context of the evolution of regulation by helical repeat proteins.


Assuntos
Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética
19.
Plant Physiol ; 170(2): 821-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644506

RESUMO

The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Chlamydomonas reinhardtii/ultraestrutura , Luz , Modelos Biológicos , Complexo de Proteína do Fotossistema II/genética , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
20.
Plant Cell ; 26(1): 373-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24449688

RESUMO

FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.


Assuntos
Proteases Dependentes de ATP/fisiologia , Proteínas de Algas/fisiologia , Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Tilacoides/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonagem Molecular , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa