Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Korean Med Sci ; 38(27): e205, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431539

RESUMO

Tixagevimab/cilgavimab is a monoclonal antibody used to prevent coronavirus disease 2019 among immunocompromised hosts and maintained neutralizing activity against early omicron variants. Omicron BN.1 became a dominant circulating strain in Korea early 2023, but its susceptibility to tixagevimab/cilgavimab is unclear. We conducted plaque reduction neutralization test (PRNT) against BN.1 in a prospective cohort (14 patients and 30 specimens). BN.1 PRNT was conducted for one- and three-months after tixagevimab/cilgavimab administration and the average PRNT ND50 of each point was lower than the positive cut-off value of 20 (12.9 ± 4.5 and 13.2 ± 4.2, respectively, P = 0.825). In the paired analyses, tixagevimab/cilgavimab-administered sera could not actively neutralize BN.1 (PRNT ND50 11.5 ± 2.9, P = 0.001), compared with the reserved activity against BA.5 (ND50 310.5 ± 180.4). Unlike virus-like particle assay, tixagevimab/cilgavimab was not active against BN.1 in neutralizing assay, and would not be effective in the present predominance of BA.2.75 sublineages.


Assuntos
COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2 , Anticorpos Monoclonais , Surtos de Doenças , República da Coreia/epidemiologia
2.
Molecules ; 25(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036475

RESUMO

Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be applied to pregnant women. Objective: The objectives of the study were to investigate a natural product, Abeliophyllum distichum leaf (ADL) extract, to examine the possibility of preventing preterm birth caused by inflammation. Methods: We used a mouse preterm birth model by intraperitoneally injecting lipopolysaccharides (LPS). ELISA, Western blot, real-time PCR and immunofluorescence staining analyses were performed to confirm the anti-inflammatory efficacy and related mechanisms of the ADL extracts. Cytotoxicity and cell death were measured using Cell Counting Kit-8 (CCK-8) analysis and flow cytometer. Results: A daily administration of ADL extract significantly reduced preterm birth, fetal loss, and fetal growth restriction after an intraperitoneal injection of LPS in mice. The ADL extract prevented the LPS-induced expression of TNF-α in maternal serum and amniotic fluid and attenuated the LPS-induced upregulation of placental proinflammatory genes, including IL-1ß, IL-6, IL-12p40, and TNF-α and the chemokine gene CXCL-1, CCL-2, CCL3, and CCL-4. LPS-treated THP-1 cell-conditioned medium accelerated trophoblast cell death, and TNF-α played an essential role in this effect. The ADL extract reduced LPS-treated THP-1 cell-conditioned medium-induced trophoblast cell death by inhibiting MAPKs and the NF-κB pathway in macrophages. ADL extract prevented exogenous TNF-α-induced increased trophoblast cell death and decreased cell viability. Conclusions: We have demonstrated that the inhibition of LPS-induced inflammation by ADL extract can prevent preterm birth, fetal loss, and fetal growth restriction.


Assuntos
Glucosídeos/química , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Oleaceae/química , Fenóis/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Feminino , Masculino , Camundongos , Trofoblastos/citologia , Trofoblastos/metabolismo
3.
Cell Physiol Biochem ; 37(5): 1881-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584287

RESUMO

BACKGROUND/AIMS: Though CCR4-NOT2 (CNOT2), one of CCR4-NOT complex subunits, was known to be involved in metastasis and apoptosis through transcription and mRNA degradation, its other biological function is poorly understood so far. The aim of this study is to elucidate the molecular role of CNOT2 in the differentiation process of 3T3-L1 preadipocytes. METHODS AND RESULTS: CNOT2 was overexpressed during the differentiation process of 3T3-L1 preadipocytes. Consistently, mRNA levels of CNOT2, adiponectin, adiponectin 2, PPARx03B3; and CEBPα were enhanced in 3T3-L1 adipocytes. Conversely, CNOT2 depletion by siRNA transfection also reversed the activation of PPARx03B3; and CEBPα and inhibition of GSK3α/ß and ß-catenin at the protein level in 3T3-L1 preadipocytes. Immunofluorescence assay revealed that CNOT2 was colocalized with PPARx03B3;, but not with CEBPα in 3T3-L1 adipocyte. Consistently, IP western blots revealed that CNOT2 interacted with PPARx03B3; in 3T3-L1 adipocyte. CONCLUSION: Our findings demonstrate that CNOT2 promotes the differentiation of 3T3-L1 preadipocytes via upregulation of PPARx03B3;, and CEBPα and inhibition of GSK3α/ß and ß-catenin signaling as a potent molecular target for obesity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , PPAR gama/metabolismo , Proteínas Repressoras/metabolismo , beta Catenina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Adiponectina/genética , Adiponectina/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Regulação para Baixo , Glicogênio Sintase Quinase 3 beta , Camundongos , Microscopia de Fluorescência , PPAR gama/genética , Fosforilação , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Regulação para Cima
4.
Cancer Cell Int ; 14(1): 117, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506265

RESUMO

BACKGROUND: Though ergosterol peroxide (EP) derived from Neungyi mushrooms (Sarcodon aspratus) was known to have cytotoxic, apoptotic, anti-inflammatory and antimycobacterial effects, the underlying molecular mechanism of EP still remains unclear. Thus, in the present study, the apoptotic mechanism of EP was elucidated in DU 145 prostate cancer cells. METHODS: Cell viability of prostate cancer cells was measured by MTT assay. To see whether EP induces the apoptosis, FACS, western blot and TUNEL assay were performed. To determine the role of Death receptor (DR) 5 molecules in EP-induced apoptosis in DU 145 prostate cancer cells, the silencing of DR 5 was performed by using siRNAs. RESULTS: EP showed significant cytotoxicity against DU 145, PC 3, M2182 prostate cancer cells. Also, EP effectively increased the sub G1 population and terminal deoxynucleotidyl transferase DUTP nick end labeling (TUNEL) positive cells in DU 145 prostate cancer cells. Furthermore, western blotting revealed that EP cleaved poly (ADP-ribose) polymerase (PARP) and caspase 8/3, attenuated the expression of fluorescence loss in photobleaching (FLIP), Bcl-XL and Bcl-2 as well as activated Bax, Fas-associated death domain (FADD) and DR 5 in a concentration dependent manner in DU 145 prostate cancer cells. Conversely, caspase 8 inhibitor Z-IETD-FMK blocked the apoptotic ability of EP to cleave PARP and an increase of sub G1 population in DU 145 prostate cancer cells. Likewise, the silencing of DR 5 suppressed the cleavages of PARP induced by EP in DU 145 prostate cancer cells. CONCLUSION: Overall, our findings suggest that ergosterol peroxide induces apoptosis via activation of death receptor 5 and caspase 8/3 in DU 145 prostate cancer cells as a cancer chemopreventive agent or dietary factor.

5.
J Nat Prod ; 77(1): 63-9, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24328151

RESUMO

The underlying antimetastatic mechanism of anethole (1) still remains unclear in association with the molecules of the epithelial to mesenchymal transition (EMT). Herein, the role of the EMT molecules was elucidated in terms of the antimetastatic activity of 1 using DU145 cells. Anethole significantly inhibited the adhesion of DU145 cells to vitronectin-coated plates, as well as migration in a wound-healing assay and invasion using a Boyden chamber. Also, anethole suppressed the expression of MMP-9 in DU145 cells by zymography, ELISA, and RT-PCR. Consistently, the silencing of MMP-9 enhanced the activity of 1 to upregulate the expression of E-cadherin and to attenuate the expression of Vimentin in DU145 cells. Compound 1 enhanced E-cadherin, which is an epithelial marker and attenuated the expression of Vimentin, Twist, and Snail as mesenchymal molecules at the mRNA level. Consistently, anethole upregulated E-cadherin and downregulated the expression of Vimentin, Twist and PI3K, and AKT at the protein level in DU145 cells. Conversely, the antimetastatic effects of 1 to inhibit invasion and the expression of MMP-9 and upregulate E-cadherin were reversed by the EMT inducer TGF-ß in DU145 cells. Overall, the present findings suggest that anethole exerts antimetastatic activity via regulation of crosstalk between EMT molecules and MMP-9 on the basis of the in vitro data obtained.


Assuntos
Anisóis/farmacologia , Antineoplásicos/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Derivados de Alilbenzenos , Anisóis/química , Biomarcadores , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Mesoderma/metabolismo , Estrutura Molecular , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/efeitos dos fármacos , Vimentina/efeitos dos fármacos
6.
BMC Complement Altern Med ; 14: 419, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25345853

RESUMO

BACKGROUND: Osteopontin (OPN) is one of important molecular targets in cancer progression, metastasis as a calcium-binding, extracellular-matrix-associated protein of the small integrin-binding ligand and, N-linked glycoprotein. In the present study, anti-metastatic mechanism of ethanol extracts of Ocimum sanctum (EEOS) was elucidated on OPN enhanced metastasis in NCI-H460 non- small cell lung cancer cells. METHODS: Cell viability was measured by MTT assay. Adhesion and invasion assays were carried out to see that EEOS inhibited cell adhesion and invasion in OPN treated and non-treated NCI-H 460 cells. RT-PCR was used to determine the mRNA levels of uPA, uPAR, and EGFR. RESULTS: EEOS significantly inhibited cell adhesion and invasion in OPN treated and non treated NCI-H460 cells, though EEOS did not show any toxicity up to 200 µg/ml. EEOS effectively attenuated the expression of OPN and CD44 and also OPN activated the expression of CD44 in NCI-H460 cells. In addition, EEOS effectively suppressed the expression of phosphatidylinositide 3-kinases (PI3K) and cyclooxygenase 2 (COX-2) and the phosphorylation of Akt at protein level in OPN treated NCI-H460 cells. Also, EEOS significantly attenuated the expression of urokinase plasminogen activator (uPA), its receptor (uPAR) and epidermal growth factor receptor (EGFR) at mRNA level and reduced vascular endothelial growth factor (VEGF) production and MMP-9 activity in OPN treated NCI-H460 cells. Furthermore, PI3K/Akt inhibitor LY294002 enhanced anti-metastatic potential of EEOS to attenuate the expression of uPA and MMP-9 in OPN treated NCI-H 460 cells. CONCLUSION: Overall, our findings suggest that anti-metastatic mechanism of EEOS is mediated by inhibition of PI3K/Akt in OPN treated NCI-H460 non-small cell lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ocimum/química , Osteopontina/genética , Osteopontina/metabolismo , Extratos Vegetais/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Front Immunol ; 14: 1139980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936968

RESUMO

Introduction: The effect of tixagevimab/cilgavimab (Evusheld™; AstraZeneca, UK) should be evaluated in the context of concurrent outbreak situations. Methods: For serologic investigation of tixagevimab/cilgavimab during the BA.5 outbreak period, sera of immunocompromised (IC) hosts sampled before and one month after tixagevimab/cilgavimab administration and those of healthcare workers (HCWs) sampled one month after a 3rd shot of COVID-19 vaccines, five months after BA.1/BA.2 breakthrough infection (BI), and one month after BA.5 BI were investigated. Semi-quantitative anti-spike protein antibody (Sab) test and plaque reduction neutralizing test (PRNT) against BA.5 were performed. Results: A total of 19 IC hosts (five received tixagevimab/cilgavimab 300 mg and 14 received 600 mg) and 41 HCWs (21 experienced BA.1/BA.2 BI and 20 experienced BA.5 BI) were evaluated. Baseline characteristics did not differ significantly between IC hosts and HCWs except for age and hypertension. Sab significantly increased after tixagevimab/cilgavimab administration (median 130.2 BAU/mL before tixagevimab/cilgavimab, 5,665.8 BAU/mL after 300 mg, and 10,217 BAU/mL after 600 mg; both P < 0.001). Sab of one month after the 3rd shot (12,144.2 BAU/mL) or five months after BA.1/BA.2 BI (10,455.8 BAU/mL) were comparable with that of tixagevimab/cilgavimab 600 mg, while Sab of one month after BA.5 BI were significantly higher (22,216.0 BAU/mL; P < 0.001). BA.5 PRNT ND50 significantly increased after tixagevimab/cilgavimab administration (median ND50 29.6 before tixagevimab/cilgavimab, 170.8 after 300 mg, and 298.5 after 600 mg; both P < 0.001). The ND50 after tixagevimab/cilgavimab 600 mg was comparable to those of five months after BA.1 BI (ND50 200.9) while ND50 of one month after the 3rd shot was significantly lower (ND50 107.6; P = 0.019). The ND50 of one month after BA.5 BI (ND50 1,272.5) was highest among tested groups, but statistical difference was not noticed with tixagevimab/cilgavimab 600 mg. Conclusion: Tixagevimab/cilgavimab provided a comparable neutralizing activity against the BA.5 with a healthy adult population who were vaccinated with a 3rd shot and experienced BA.1/BA.2 BI.


Assuntos
Infecções Irruptivas , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19
8.
Cancers (Basel) ; 12(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899752

RESUMO

Oncogenic activation of the mammalian target of rapamycin complex 1 (mTORC1) leads to endometrial cancer cell growth and proliferation. Sestrin2 (SESN2), a highly conserved stress-inducible protein, is involved in homeostatic regulation via inhibition of reactive oxygen species (ROS) and mTORC1. However, the role of SESN2 in human endometrial cancer remains to be investigated. Here, we investigated expression, clinical significance, and underlying mechanisms of SESN2 in endometrial cancer. SESN2 was upregulated more in endometrial cancer tissues than in normal endometrial tissues. Furthermore, upregulation of SESN2 statistically correlated with shorter overall survival and disease-free survival in patients with endometrial cancer. SESN2 expression strongly correlated with mTORC1 activity, suggesting its impact on prognosis in endometrial cancer. Additionally, knockdown of SESN2 promoted cell proliferation, migration, and ROS production in endometrial cancer cell lines HEC-1A and Ishikawa. Treatment of these cells with mTOR inhibitors reversed endometrial cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT) marker expression. Moreover, in a xenograft nude mice model, endometrial cancer growth increased by SESN2 knockdown. Thus, our study provides evidence for the prognostic significance of SESN2, and a relationship between SESN2, the mTORC1 pathway, and endometrial cancer growth, suggesting SESN2 as a potential therapeutic target in endometrial cancer.

9.
Biomed Res Int ; 2020: 5925094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32090100

RESUMO

Saponins are a group of naturally occurring plant glycosides with the features of their strong foam-forming properties and multibiological effects such as antitumor activity. Though Misaponin B, one of the triterpenoid saponins from Madhuca longifolia, is known to have spermicidal and antioxidant activity, the other biological activities have been never reported so far. Thus, in the present study, the antitumor mechanism of Misaponin B was investigated in A549 and AsPC-1 cancer cells. Misaponin B exerted significant cytotoxicity in A549, H460, SKOV3, and AsPC-1 cancer cells. Among them, A549 and AsPC-1 cells were more susceptible to Misaponin B. Misaponin B induced G2/M arrest and cytokinesis failure and increased the expression of LC3B and p62 with autophagic vacuoles and GFP-LC3 punctae in A549 and AsPC-1 cells. Furthermore, Misaponin B suppressed autophagy flux in A549 cells transfected by GFP-mRFP-LC3 constructs by showing merged yellow color by autophagy flux assay. Overall, our findings provide evidences that Misaponin B induces G2M arrest and impairs autophagy in A549 and AsPC-1 cells.


Assuntos
Autofagia/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Saponinas/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fluorescência , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Peso Molecular , Saponinas/química
11.
Oncotarget ; 8(15): 25032-25045, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28212571

RESUMO

The aim of present study is to elucidate autophagic mechanism of tanshinone I (Tan I) in H28 and H2452 mesothelioma cells. Herein, Tan I exerted cytotoxicity with autophagic features of autophagy protein 5 (ATG5)/ microtubule-associated protein 1A/1B-light chain 3II (LC3 II) activation, p62/sequestosome 1 (SQSTM1) accumulation and increased number of LC3II punctae, acridine orange-stained cells and autophagic vacuoles. However, 3-methyladenine (3MA) and NH4Cl increased cytotoxicity in Tan I treated H28 cells. Furthermore, autophagy flux was enhanced in Tan I-treated H28 cells transfected by RFP-GFP-LC3 constructs, with colocalization of GFP-LC3 punctae with LAMP1 or Lysotracker. Interestingly, C-terminal UBA domain is required for Tan 1 induced aggregation of p62 in H28 cells. Notably, Tan I upregulated CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring protein-1 (IRE1) and p-c-Jun N-terminal kinase (p-JNK), but silencing of IRE1 or p62 and JNK inhibitor SP600125 blocked the LC3II accumulation in Tan I-treated H28 cells. Overall, these findings demonstrate that Tan I exerts antitumor activity through a compromise between apoptosis and p62/SQSTM1-dependent autophagy via activation of JNK and IRE 1 in malignant mesothelioma cells.


Assuntos
Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Proteína Sequestossoma-1/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Endorribonucleases/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/enzimologia , Lisossomos/metabolismo , Mesotelioma/enzimologia , Mesotelioma Maligno , Fosforilação , Neoplasias Pleurais/enzimologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteína Sequestossoma-1/química , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo
12.
In Vitro Cell Dev Biol Anim ; 52(4): 473-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26714749

RESUMO

Though special AT-rich sequence-binding protein 2 (SATB2) is reported as a transcriptional regulator of skeletal development and osteogenic differentiation, the underlying mechanism of SATB2 is not fully understood. Herein, we report that SATB2 is localized to the mitotic microtubules, the centrosome, and midbodies in mitotic cells with alpha-tubulin. Moreover, siRNA-mediated disruption of SATB2 in H460 cells caused the defect of nuclear morphology and multinucleate cells. SATB2 siRNA knockdown reduced the viability and downregulated the CDK2 expression in SKOV3 cells. Consistently, cell cycle analysis demonstrated that the silencing of SATB2 induced cell-cycle G1 arrest. Furthermore, proteosomal inhibitor MG132 treatment rescued the downregulation of CDK2 in SATB2-silenced SKOV3 cells. Taken together, our findings suggest that SATB2 regulates the mitosis of cell cycle and affects G1 cell cycle via interaction with CDK2.


Assuntos
Centrossomo/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Forma do Núcleo Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos
13.
Int J Biol Sci ; 12(11): 1279-1288, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28090191

RESUMO

Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/ß), ß-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, ß-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/metabolismo , Mesotelioma/patologia , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Mesotelioma Maligno , MicroRNAs/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Ácido Ursólico
14.
Br J Pharmacol ; 173(6): 1033-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26661339

RESUMO

BACKGROUND AND PURPOSE: The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL-induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. EXPERIMENTAL APPROACH: Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. KEY RESULTS: Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL-resistant non-small-cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer-binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down-regulated expression of survivin and Bcl-xL in TRAIL-resistant NSCLC cells. CONCLUSIONS AND IMPLICATIONS: ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL-resistant NSCLC cell lines, partly via up-regulation of DR5.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Butiratos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
15.
J Cancer ; 6(1): 19-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25553085

RESUMO

Recently microRNAs (miRNAs) have been attractive targets with their key roles in biological regulation through post-transcription to control mRNA stability and protein translation. Though melatonin was known as an anti-angiogenic agent, the underlying mechanism of melatonin in PC-3 prostate cancer cells under hypoxia still remains unclear. Thus, in the current study, we elucidated the important roles of miRNAs in melatonin-induced anti-angiogenic activity in hypoxic PC-3 cells. miRNA array revealed that 33 miRNAs (>2 folds) including miRNA3195 and miRNA 374b were significantly upregulated and 16 miRNAs were downregulated in melatonin-treated PC-3 cells under hypoxia compared to untreated control. Melatonin significantly attenuated the expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha and vascular endothelial growth factor (VEGF) at mRNA level in hypoxic PC-3 cells. Consistently, melatonin enhanced the expression of miRNA3195 and miRNA 374b in hypoxic PC-3 cells by qRT-PCR analysis. Of note, overexpression of miRNA3195 and miRNA374b mimics attenuated the mRNA levels of angiogenesis related genes such as HIF-1alpha, HIF-2 alpha and VEGF in PC-3 cells under hypoxia. Furthermore, overexpression of miRNA3195 and miRNA374b suppressed typical angiogenic protein VEGF at the protein level and VEGF production induced by melatonin, while antisense oligonucleotides against miRNA 3195 or miRNA 374b did not affect VEGF production induced by melatonin. Also, overexpression of miR3195 or miR374b reduced HIF-1 alpha immunofluorescent expression in hypoxic PC-3 compared to untreated control. Overall, our findings suggest that upregulation of miRNA3195 and miRNA374b mediates anti-angiogenic property induced by melatonin in hypoxic PC-3 cells.

16.
Oncotarget ; 5(14): 5624-36, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25015549

RESUMO

Though tumor necrosis factor related apoptosis inducing ligand (TRAIL) has been used as a potent anticancer agent, TRAIL resistance is a hot-issue in cancer therapy. We investigated the antitumor mechanism of Tanshinone I to sensitize prostate cancer cells to TRAIL. Comibination of Tanshinone I and TRAIL exerted synergistic cytotoxicity, increased cleaved PARP, sub G1 population, the number of TUNELpositive cells, activated caspase 8, 9 and ROS production in PC-3 and DU145 cells. Of note, combination of Tanshinone I and TRAIL enhanced the protein expression of death receptor 5 (DR5) and attenuated anti-apoptotic proteins. RT-PCR and RT-qPCR analyses confirmed that co-treatment of Tanshinone I and TRAIL up-regulated DR5 and microRNA 135a-3p at mRNA level or activity of DR5 promoter and attenuated phosphorylation of extracellular signal regulated kinases in PC-3. Conversely, the silencing of DR5 blocked the increased cytotoxicity, sub G1 population and PARP cleavages induced by co-treatment of Tanshinone I and TRAIL. Interestingly, miR135a-3p mimic enhanced DR5 at mRNA, increased PARP cleavage, Bax and the number of TUNEL positive cells in Tanshinone I and TRAIL cotreated PC-3. Overall, our findings suggest that Tanshinone I enhances TRAIL mediated apoptosis via upregulation of miR135a-3p mediated DR5 in prostate cancer cells as a potent TRAIL sensitizer.


Assuntos
Abietanos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , MicroRNAs/biossíntese , Neoplasias da Próstata/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Abietanos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa