Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 27(4): 1297-1306, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38190086

RESUMO

Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.


Assuntos
Bacteriófagos , Composição de Bases , Genoma Viral , Fases de Leitura Aberta , Filogenia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , China , RNA de Transferência/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-39140294

RESUMO

Red Melon (RM) and Red Cover (RC) discus (Symphysodon spp.) are ornamental fish varieties that were selectively bred from the wild parental lineages of the brown discus S. aquafaciatus over many generations, resulting in distinct cutaneous patterns from juveniles to adults. To better understand the underlying mechanisms, skin samples were collected from juveniles aged 60 days and adults aged 1 year from RM and RC for investigations. Microscopic observation detected xanthophores and erythrophores in all samples, except RC juveniles with no erythrophores. Melanophores were presented only in RC. The comparative analysis revealed that genes involved in pteridine synthesis (gch1 and zgc:153031), one-carbon metabolism (aldh1l2 and zgc153031), and lipid metabolism (apoda and klf1) were differentially expressed in RM juveniles, which may be associated with the development of erythrophores and xanthophores. The temporal inhibition of melanophore differentiation and development was observed in RM juveniles, coupled with elevated expression of notum2 and sost, two antagonist genes in Wnt-signaling, suggesting their roles in melanophore development. Distinct pigment pattern between RM and RC since the juvenile stage may be driven by the differential expression of multiple axial developmental genes, including GATA, ankyrin, and mitotic spindle orientation proteins. This is the first report to describe the differential growth of cutaneous pigments and the molecular processes involved in red discus. The results provided valuable insights into pigment pattern differences in an interesting ornamental fish model.

3.
Microbiol Spectr ; 12(2): e0336723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214523

RESUMO

Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.


Assuntos
Bacteriófagos , Shewanella , Bacteriófagos/genética , Shewanella/genética , Filogenia , Análise de Sequência de DNA , Genoma Viral , Fases de Leitura Aberta , DNA Viral/genética
4.
Nat Plants ; 10(2): 240-255, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278954

RESUMO

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Assuntos
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa