Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 21(3): 650-662, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29961767

RESUMO

PURPOSE: We evaluated genome sequencing (GS) as an alternative to multigene panel sequencing (PS) for genetic testing in dilated cardiomyopathy (DCM). METHODS: Forty-two patients with familial DCM underwent PS and GS, and detection rates of rare single-nucleotide variants and small insertions/deletions in panel genes were compared. Loss-of-function variants in 406 cardiac-enriched genes were evaluated, and an assessment of structural variation was performed. RESULTS: GS provided broader and more uniform coverage than PS, with high concordance for rare variant detection in panel genes. GS identified all PS-identified pathogenic or likely pathogenic variants as well as two additional likely pathogenic variants: one was missed by PS due to low coverage, the other was a known disease-causing variant in a gene not included on the panel. No loss-of-function variants in the extended gene set met clinical criteria for pathogenicity. One BAG3 structural variant was classified as pathogenic. CONCLUSION: Our data support the use of GS for genetic testing in DCM, with high variant detection accuracy and a capacity to identify structural variants. GS provides an opportunity to go beyond suites of established disease genes, but the incremental yield of clinically actionable variants is limited by a paucity of genetic and functional evidence for DCM association.


Assuntos
Cardiomiopatia Dilatada/genética , Testes Genéticos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Feminino , Predisposição Genética para Doença/genética , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
3.
PLoS One ; 8(9): e72011, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023725

RESUMO

HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.


Assuntos
Receptor Muscarínico M1/metabolismo , Técnicas Biossensoriais , Butadienos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Células HEK293 , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Nitrilas/farmacologia , Receptor Muscarínico M1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa