Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 37(1): 153-162, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29314212

RESUMO

AIMS: Lumbar to sacral rerouting surgery can potentially allow voiding via a skin-central nervous system-bladder reflex pathway. Here, we assessed if this surgery was effective in treating neurogenic bladder dysfunction/sphincter in felines. METHODS: Eight cats underwent spinal cord transection (SCT) at thoracic level 10/11. Unilateral L7 to S1 ventral root anastomosis was performed 1 month later in six cats. Two cats served as transection-only controls. Electrical and manual stimulation of L6-S1 dermatomes, and urodynamics were performed at 3, 5, 7, and 9/10 months post transection. At 9/10 months, cats were also evaluated by direct electrophysiological testing of anastomosed roots with urodynamics, then tissue collection and examination of the root anastomosis site and lumbosacral cord ventral horns for cells retrogradely labeled from tracer dye injected 2 weeks earlier into the bladder wall. RESULTS: At 9/10 months, four of six rerouted cats exhibited increased detrusor pressure provoked by cutaneous stimulation, one cat bilaterally. Two cats presented with a voiding stream after ipsilateral cutaneous stimulation at 7 and 9 months. All six rerouted animals showed regrowth of axons from the L7 ventral horn to the bladder, although some aberrant axonal regrowth was also observed. CONCLUSION: L7 to S1 ventral root rerouting below the level of SCT showed successful axonal regrowth to the bladder from the L7 spinal cord segment in all rerouted animals, and induced increased detrusor pressure response to cutaneous stimulation in a subset. This feasibility study paves the way for future animal studies for bladder reinnervation.


Assuntos
Anastomose Cirúrgica/métodos , Sacro/cirurgia , Traumatismos da Medula Espinal/cirurgia , Raízes Nervosas Espinhais/cirurgia , Bexiga Urinaria Neurogênica/cirurgia , Urodinâmica/fisiologia , Animais , Gatos , Estudos de Viabilidade , Projetos Piloto , Sacro/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/fisiopatologia , Micção/fisiologia
2.
PLoS One ; 14(4): e0215036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970000

RESUMO

OBJECTIVE: We aimed to refine electroneurogram techniques for monitoring hypogastric nerve activity during bladder filling, and then examined nerve activity in normal intact versus acutely decentralized bladders. METHODS: Effects of electrical stimulation of hypogastric nerves or lumbar ventral roots on detrusor pressure were examined, as were effects of isoflurane versus propofol anesthetics on hypogastric nerve stimulation evoked pressure. Hypogastric nerve activity was then recorded using custom-made bipolar cuff electrodes during bladder filling before and after its transection between the spinal cord and electrode to eliminate efferent nerve signals. RESULTS: Electrical stimulation of hypogastric nerves evoked low amplitude detrusor pressures that did not differ between the two anesthetics. Upper lumbar (L2) ventral root stimulation evoked detrusor pressures were suppressed, yet not eliminated, after transection of hypogastric nerves and all spinal roots below L5. Afferent and efferent hypogastric nerve activity did not change with bladder filling in neuronally intact bladders yet decreased in decentralized bladders. No change in afferent activity was observed during bladder filling in either intact or decentralized bladders. CONCLUSIONS: These findings indicate that a more complete decentralized bladder model should include transection of lumbosacral spinal roots innervating the bladder as well as hypogastric nerves. These refined electroneurogram recording methods may be suitable for evaluating the effectiveness of nerve transfer surgeries for bladder reinnervation by monitoring sensory activity in the transferred nerve.


Assuntos
Estimulação Elétrica , Raízes Nervosas Espinhais/fisiologia , Sistema Nervoso Simpático/fisiologia , Bexiga Urinária/fisiologia , Animais , Cães , Potenciais Evocados , Isoflurano/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Neurônios Eferentes/efeitos dos fármacos , Neurônios Eferentes/fisiologia , Propofol/farmacologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa