Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Oncologist ; 29(2): e187-e197, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37669223

RESUMO

BACKGROUND: Not only should resistance to neoadjuvant chemotherapy (NAC) be considered in patients with breast cancer but also the possibility of achieving a pathologic complete response (PCR) after NAC. Our study aims to develop 2 multimodal ultrasound deep learning (DL) models to noninvasively predict resistance and PCR to NAC before treatment. METHODS: From January 2017 to July 2022, a total of 170 patients with breast cancer were prospectively enrolled. All patients underwent multimodal ultrasound examination (grayscale 2D ultrasound and ultrasound elastography) before NAC. We combined clinicopathological information to develop 2 DL models, DL_Clinical_resistance and DL_Clinical_PCR, for predicting resistance and PCR to NAC, respectively. In addition, these 2 models were combined to stratify the prediction of response to NAC. RESULTS: In the test cohort, DL_Clinical_resistance had an AUC of 0.911 (95%CI, 0.814-0.979) with a sensitivity of 0.905 (95%CI, 0.765-1.000) and an NPV of 0.882 (95%CI, 0.708-1.000). Meanwhile, DL_Clinical_PCR achieved an AUC of 0.880 (95%CI, 0.751-0.973) and sensitivity and NPV of 0.875 (95%CI, 0.688-1.000) and 0.895 (95%CI, 0.739-1.000), respectively. By combining DL_Clinical_resistance and DL_Clinical_PCR, 37.1% of patients with resistance and 25.7% of patients with PCR were successfully identified by the combined model, suggesting that these patients could benefit by an early change of treatment strategy or by implementing an organ preservation strategy after NAC. CONCLUSIONS: The proposed DL_Clinical_resistance and DL_Clinical_PCR models and combined strategy have the potential to predict resistance and PCR to NAC before treatment and allow stratified prediction of NAC response.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Estudos Retrospectivos
2.
Radiology ; 307(5): e221843, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338353

RESUMO

Background Handcrafted radiomics and deep learning (DL) models individually achieve good performance in lesion classification (benign vs malignant) on contrast-enhanced mammography (CEM) images. Purpose To develop a comprehensive machine learning tool able to fully automatically identify, segment, and classify breast lesions on the basis of CEM images in recall patients. Materials and Methods CEM images and clinical data were retrospectively collected between 2013 and 2018 for 1601 recall patients at Maastricht UMC+ and 283 patients at Gustave Roussy Institute for external validation. Lesions with a known status (malignant or benign) were delineated by a research assistant overseen by an expert breast radiologist. Preprocessed low-energy and recombined images were used to train a DL model for automatic lesion identification, segmentation, and classification. A handcrafted radiomics model was also trained to classify both human- and DL-segmented lesions. Sensitivity for identification and the area under the receiver operating characteristic curve (AUC) for classification were compared between individual and combined models at the image and patient levels. Results After the exclusion of patients without suspicious lesions, the total number of patients included in the training, test, and validation data sets were 850 (mean age, 63 years ± 8 [SD]), 212 (62 years ± 8), and 279 (55 years ± 12), respectively. In the external data set, lesion identification sensitivity was 90% and 99% at the image and patient level, respectively, and the mean Dice coefficient was 0.71 and 0.80 at the image and patient level, respectively. Using manual segmentations, the combined DL and handcrafted radiomics classification model achieved the highest AUC (0.88 [95% CI: 0.86, 0.91]) (P < .05 except compared with DL, handcrafted radiomics, and clinical features model, where P = .90). Using DL-generated segmentations, the combined DL and handcrafted radiomics model showed the highest AUC (0.95 [95% CI: 0.94, 0.96]) (P < .05). Conclusion The DL model accurately identified and delineated suspicious lesions on CEM images, and the combined output of the DL and handcrafted radiomics models achieved good diagnostic performance. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl and Do in this issue.


Assuntos
Aprendizado Profundo , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Mamografia/métodos , Mama/diagnóstico por imagem , Curva ROC
3.
Gastric Cancer ; 26(6): 847-862, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776394

RESUMO

BACKGROUND: The status of regional tumour draining lymph nodes (LN) is crucial for prognostic evaluation in gastric cancer (GaC) patients. Changes in lymph node microarchitecture, such as follicular hyperplasia (FH), sinus histiocytosis (SH), or paracortical hyperplasia (PH), may be triggered by the anti-tumour immune response. However, the prognostic value of these changes in GaC patients is unclear. METHODS: A systematic search in multiple databases was conducted to identify studies on the prognostic value of microarchitecture changes in regional tumour-negative and tumour-positive LNs measured on histopathological slides. Since the number of GaC publications was very limited, the search was subsequently expanded to include junctional and oesophageal cancer (OeC). RESULTS: A total of 28 articles (17 gastric cancer, 11 oesophageal cancer) met the inclusion criteria, analyzing 26,503 lymph nodes from 3711 GaC and 1912 OeC patients. The studies described eight different types of lymph node microarchitecture changes, categorized into three patterns: hyperplasia (SH, FH, PH), cell-specific infiltration (dendritic cells, T cells, neutrophils, macrophages), and differential gene expression. Meta-analysis of five GaC studies showed a positive association between SH in tumour-negative lymph nodes and better 5-year overall survival. Pooled risk ratios for all LNs showed increased 5-year overall survival for the presence of SH and PH. CONCLUSIONS: This systematic review suggests that sinus histiocytosis and paracortical hyperplasia in regional tumour-negative lymph nodes may provide additional prognostic information for gastric and oesophageal cancer patients. Further studies are needed to better understand the lymph node reaction patterns and explore their impact of chemotherapy treatment and immunotherapy efficacy.


Assuntos
Neoplasias Esofágicas , Histiocitose Sinusal , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Hiperplasia/patologia , Histiocitose Sinusal/patologia , Relevância Clínica , Linfonodos/cirurgia , Linfonodos/patologia , Prognóstico , Neoplasias Esofágicas/patologia , Estadiamento de Neoplasias
4.
Eur Radiol ; 32(4): 2188-2199, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34842959

RESUMO

OBJECTIVES: An accurate and rapid diagnosis is crucial for the appropriate treatment of pulmonary tuberculosis (TB). This study aims to develop an artificial intelligence (AI)-based fully automated CT image analysis system for detection, diagnosis, and burden quantification of pulmonary TB. METHODS: From December 2007 to September 2020, 892 chest CT scans from pathogen-confirmed TB patients were retrospectively included. A deep learning-based cascading framework was connected to create a processing pipeline. For training and validation of the model, 1921 lesions were manually labeled, classified according to six categories of critical imaging features, and visually scored regarding lesion involvement as the ground truth. A "TB score" was calculated based on a network-activation map to quantitively assess the disease burden. Independent testing datasets from two additional hospitals (dataset 2, n = 99; dataset 3, n = 86) and the NIH TB Portals (n = 171) were used to externally validate the performance of the AI model. RESULTS: CT scans of 526 participants (mean age, 48.5 ± 16.5 years; 206 women) were analyzed. The lung lesion detection subsystem yielded a mean average precision of the validation cohort of 0.68. The overall classification accuracy of six pulmonary critical imaging findings indicative of TB of the independent datasets was 81.08-91.05%. A moderate to strong correlation was demonstrated between the AI model-quantified TB score and the radiologist-estimated CT score. CONCLUSIONS: The proposed end-to-end AI system based on chest CT can achieve human-level diagnostic performance for early detection and optimal clinical management of patients with pulmonary TB. KEY POINTS: • Deep learning allows automatic detection, diagnosis, and evaluation of pulmonary tuberculosis. • Artificial intelligence helps clinicians to assess patients with tuberculosis. • Pulmonary tuberculosis disease activity and treatment management can be improved.


Assuntos
Inteligência Artificial , Tuberculose Pulmonar , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Tuberculose Pulmonar/diagnóstico por imagem
5.
Eur J Nucl Med Mol Imaging ; 48(12): 3961-3974, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693966

RESUMO

INTRODUCTION: Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include (handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes. METHODS: Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and prediction of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung cancer. CONCLUSION: The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of methodology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-modality images, and combined multi-discipline or multi-omics to form "Medomics."


Assuntos
Neoplasias Pulmonares , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Aprendizado de Máquina , Prognóstico , Reprodutibilidade dos Testes
6.
Radiology ; 297(2): 451-458, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840472

RESUMO

Background Solid components of part-solid nodules (PSNs) at CT are reflective of invasive adenocarcinoma, but studies describing radiomic features of PSNs and the perinodular region are lacking. Purpose To develop and to validate radiomic signatures diagnosing invasive lung adenocarcinoma in PSNs compared with the Brock, clinical-semantic features, and volumetric models. Materials and Methods This retrospective multicenter study (https://ClinicalTrials.gov, NCT03872362) included 291 patients (median age, 60 years; interquartile range, 55-65 years; 191 women) from January 2013 to October 2017 with 297 PSN lung adenocarcinomas split into training (n = 229) and test (n = 68) data sets. Radiomic features were extracted from the different regions (gross tumor volume [GTV], solid, ground-glass, and perinodular). Random-forest models were trained using clinical-semantic, volumetric, and radiomic features, and an online nodule calculator was used to compute the Brock model. Performances of models were evaluated using standard metrics such as area under the curve (AUC), accuracy, and calibration. The integrated discrimination improvement was applied to assess model performance changes after the addition of perinodular features. Results The radiomics model based on ground-glass and solid features yielded an AUC of 0.98 (95% confidence interval [CI]: 0.96, 1.00) on the test data set, which was significantly higher than the Brock (AUC, 0.83 [95% CI: 0.72, 0.94]; P = .007), clinical-semantic (AUC, 0.90 [95% CI: 0.83, 0.98]; P = .03), volumetric GTV (AUC, 0.87 [95% CI: 0.78, 0.96]; P = .008), and radiomics GTV (AUC, 0.88 [95% CI: 0.80, 0.96]; P = .01) models. It also achieved the best accuracy (93% [95% CI: 84%, 98%]). Both this model and the model with added perinodular features showed good calibration, whereas adding perinodular features did not improve the performance (integrated discrimination improvement, -0.02; P = .56). Conclusion Separating ground-glass and solid CT radiomic features of part-solid nodules was useful in diagnosing the invasiveness of lung adenocarcinoma, yielding a better predictive performance than the Brock, clinical-semantic, volumetric, and radiomics gross tumor volume models. Online supplemental material is available for this article. See also the editorial by Nishino in this issue. Published under a CC BY 4.0 license.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Invasividade Neoplásica/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adenocarcinoma de Pulmão/patologia , Idoso , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estudos Retrospectivos , Nódulo Pulmonar Solitário/patologia
7.
Eur Respir J ; 56(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32616597

RESUMO

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has globally strained medical resources and caused significant mortality. OBJECTIVE: To develop and validate a machine-learning model based on clinical features for severity risk assessment and triage for COVID-19 patients at hospital admission. METHOD: 725 patients were used to train and validate the model. This included a retrospective cohort from Wuhan, China of 299 hospitalised COVID-19 patients from 23 December 2019 to 13 February 2020, and five cohorts with 426 patients from eight centres in China, Italy and Belgium from 20 February 2020 to 21 March 2020. The main outcome was the onset of severe or critical illness during hospitalisation. Model performances were quantified using the area under the receiver operating characteristic curve (AUC) and metrics derived from the confusion matrix. RESULTS: In the retrospective cohort, the median age was 50 years and 137 (45.8%) were male. In the five test cohorts, the median age was 62 years and 236 (55.4%) were male. The model was prospectively validated on five cohorts yielding AUCs ranging from 0.84 to 0.93, with accuracies ranging from 74.4% to 87.5%, sensitivities ranging from 75.0% to 96.9%, and specificities ranging from 55.0% to 88.0%, most of which performed better than the pneumonia severity index. The cut-off values of the low-, medium- and high-risk probabilities were 0.21 and 0.80. The online calculators can be found at www.covid19risk.ai. CONCLUSION: The machine-learning model, nomogram and online calculator might be useful to access the onset of severe and critical illness among COVID-19 patients and triage at hospital admission.


Assuntos
Infecções por Coronavirus/diagnóstico , Mortalidade Hospitalar/tendências , Aprendizado de Máquina , Pneumonia Viral/diagnóstico , Triagem/métodos , Adulto , Fatores Etários , Idoso , Área Sob a Curva , Bélgica , COVID-19 , Teste para COVID-19 , China , Técnicas de Laboratório Clínico , Estudos de Coortes , Infecções por Coronavirus/epidemiologia , Sistemas de Apoio a Decisões Clínicas , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Internacionalidade , Itália , Masculino , Pessoa de Meia-Idade , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Análise de Sobrevida
8.
Eur Radiol ; 30(5): 2680-2691, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32006165

RESUMO

OBJECTIVES: Develop a CT-based radiomics model and combine it with frozen section (FS) and clinical data to distinguish invasive adenocarcinomas (IA) from preinvasive lesions/minimally invasive adenocarcinomas (PM). METHODS: This multicenter study cohort of 623 lung adenocarcinomas was split into training (n = 331), testing (n = 143), and external validation dataset (n = 149). Random forest models were built using selected radiomics features, results from FS, lesion volume, clinical and semantic features, and combinations thereof. The area under the receiver operator characteristic curves (AUC) was used to evaluate model performances. The diagnosis accuracy, calibration, and decision curves of models were tested. RESULTS: The radiomics-based model shows good predictive performance and diagnostic accuracy for distinguishing IA from PM, with AUCs of 0.89, 0.89, and 0.88, in the training, testing, and validation datasets, respectively, and with corresponding accuracies of 0.82, 0.79, and 0.85. Adding lesion volume and FS significantly increases the performance of the model with AUCs of 0.96, 0.97, and 0.96, and with accuracies of 0.91, 0.94, and 0.93 in the three datasets. There is no significant difference in AUC between the FS model enriched with radiomics and volume against an FS model enriched with volume alone, while the former has higher accuracy. The model combining all available information shows minor non-significant improvements in AUC and accuracy compared with an FS model enriched with radiomics and volume. CONCLUSIONS: Radiomics signatures are potential biomarkers for the risk of IA, especially in combination with FS, and could help guide surgical strategy for pulmonary nodules patients. KEY POINTS: • A CT-based radiomics model may be a valuable tool for preoperative prediction of invasive adenocarcinoma for patients with pulmonary nodules. • Radiomics combined with frozen sections could help in guiding surgery strategy for patients with pulmonary nodules.


Assuntos
Adenocarcinoma in Situ/diagnóstico por imagem , Adenocarcinoma de Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Adenocarcinoma in Situ/patologia , Adenocarcinoma in Situ/cirurgia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Área Sob a Curva , Feminino , Secções Congeladas , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/patologia , Nódulos Pulmonares Múltiplos/cirurgia , Cuidados Pré-Operatórios , Curva ROC , Estudos Retrospectivos , Nódulo Pulmonar Solitário/patologia , Tomografia Computadorizada por Raios X/métodos
9.
Respiration ; 99(2): 99-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31991420

RESUMO

Medical imaging plays a key role in evaluating and monitoring lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer. The application of artificial intelligence in medical imaging has transformed medical images into mineable data, by extracting and correlating quantitative imaging features with patients' outcomes and tumor phenotype - a process termed radiomics. While this process has already been widely researched in lung oncology, the evaluation of COPD in this fashion remains in its infancy. Here we outline the main applications of radiomics in lung cancer and briefly review the workflow from image acquisition to the evaluation of model performance. Finally, we discuss the current assessments of COPD and the potential application of radiomics in COPD.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Aprendizado de Máquina , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Inteligência Artificial , Mineração de Dados , Sistemas de Apoio a Decisões Clínicas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Estadiamento de Neoplasias , Prognóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Resultado do Tratamento , Fluxo de Trabalho
12.
J Pathol Inform ; 15: 100367, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38455864

RESUMO

Background: Histological examination of tumor draining lymph nodes (LNs) plays a vital role in cancer staging and prognostication. However, as soon as a LN is classed as metastasis-free, no further investigation will be performed and thus, potentially clinically relevant information detectable in tumor-free LNs is currently not captured. Objective: To systematically study and critically assess methods for the analysis of digitized histological LN images described in published research. Methods: A systematic search was conducted in several public databases up to December 2023 using relevant search terms. Studies using brightfield light microscopy images of hematoxylin and eosin or immunohistochemically stained LN tissue sections aiming to detect and/or segment LNs, their compartments or metastatic tumor using artificial intelligence (AI) were included. Dataset, AI methodology, cancer type, and study objective were compared between articles. Results: A total of 7201 articles were collected and 73 articles remained for detailed analyses after article screening. Of the remaining articles, 86% aimed at LN metastasis identification, 8% aimed at LN compartment segmentation, and remaining focused on LN contouring. Furthermore, 78% of articles used patch classification and 22% used pixel segmentation models for analyses. Five out of six studies (83%) of metastasis-free LNs were performed on publicly unavailable datasets, making quantitative article comparison impossible. Conclusions: Multi-scale models mimicking multiple microscopy zooms show promise for computational LN analysis. Large-scale datasets are needed to establish the clinical relevance of analyzing metastasis-free LN in detail. Further research is needed to identify clinically interpretable metrics for LN compartment characterization.

13.
Diagnostics (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611625

RESUMO

PURPOSE: This multicenter retrospective study aims to identify reliable clinical and radiomic features to build machine learning models that predict progression-free survival (PFS) and overall survival (OS) in pancreatic ductal adenocarcinoma (PDAC) patients. METHODS: Between 2010 and 2020 pre-treatment contrast-enhanced CT scans of 287 pathology-confirmed PDAC patients from two sites of the Hopital Universitaire de Bruxelles (HUB) and from 47 hospitals within the HUB network were retrospectively analysed. Demographic, clinical, and survival data were also collected. Gross tumour volume (GTV) and non-tumoral pancreas (RPV) were semi-manually segmented and radiomics features were extracted. Patients from two HUB sites comprised the training dataset, while those from the remaining 47 hospitals of the HUB network constituted the testing dataset. A three-step method was used for feature selection. Based on the GradientBoostingSurvivalAnalysis classifier, different machine learning models were trained and tested to predict OS and PFS. Model performances were assessed using the C-index and Kaplan-Meier curves. SHAP analysis was applied to allow for post hoc interpretability. RESULTS: A total of 107 radiomics features were extracted from each of the GTV and RPV. Fourteen subgroups of features were selected: clinical, GTV, RPV, clinical & GTV, clinical & GTV & RPV, GTV-volume and RPV-volume both for OS and PFS. Subsequently, 14 Gradient Boosting Survival Analysis models were trained and tested. In the testing dataset, the clinical & GTV model demonstrated the highest performance for OS (C-index: 0.72) among all other models, while for PFS, the clinical model exhibited a superior performance (C-index: 0.70). CONCLUSIONS: An integrated approach, combining clinical and radiomics features, excels in predicting OS, whereas clinical features demonstrate strong performance in PFS prediction.

14.
Front Oncol ; 14: 1368120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873251

RESUMO

Objective: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. A considerable percentage of patients who undergo surgery with curative intent will experience cancer recurrence. Early identification of individuals with a higher risk of recurrence is crucial for healthcare professionals to intervene promptly and devise appropriate treatment strategies. In this study, we developed prognostic models for CRC recurrence using machine learning models on a limited number of CEA measurements. Method: A dataset of 1927 patients diagnosed with Stage I-III CRC and referred to Zuyderland Hospital for surgery between 2008 and 2016 was utilized. Machine learning models were trained using this comprehensive dataset, which included demographic details, clinicopathological factors, and serial measurements of Carcinoembryonic Antigen (CEA). In this study, the predictive performance of these models was assessed, and the key prognostic factors influencing colorectal cancer (CRC) recurrence were pinpointed. Result: Among the evaluated models, the gradient boosting classifier demonstrated superior performance, achieving an Area Under the Curve (AUC) score of 0.81 and a balanced accuracy rate of 0.73. Recurrence prediction was shown to be feasible with an AUC of 0.71 when using only five post-operative CEA measurements. Furthermore, key factors influencing recurrence were identified and elucidated. Conclusion: This study shows the transformative role of machine learning in recurrence prediction for CRC, particularly by investigating the minimum number of CEA measurements required for effective recurrence prediction. This approach not only contributes to the optimization of clinical workflows but also facilitates the development of more effective, individualized treatment plans, thereby laying the groundwork for future advancements in this area. Future directions involve validating these models in larger and more diverse cohorts. Building on these efforts, our ultimate goal is to develop a risk-based follow-up strategy that can improve patient outcomes and enhance healthcare efficiency.

15.
Sci Rep ; 14(1): 2720, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302657

RESUMO

Here, we establish a CT-radiomics based method for application in invasive, orthotopic rodent brain tumour models. Twenty four NOD/SCID mice were implanted with U87R-Luc2 GBM cells and longitudinally imaged via contrast enhanced (CE-CT) imaging. Pyradiomics was employed to extract CT-radiomic features from the tumour-implanted hemisphere and non-tumour-implanted hemisphere of acquired CT-scans. Inter-correlated features were removed (Spearman correlation > 0.85) and remaining features underwent predictive analysis (recursive feature elimination or Boruta algorithm). An area under the curve of the receiver operating characteristic curve was implemented to evaluate radiomic features for their capacity to predict defined outcomes. Firstly, we identified a subset of radiomic features which distinguish the tumour-implanted hemisphere and non- tumour-implanted hemisphere (i.e, tumour presence from normal tissue). Secondly, we successfully translate preclinical CT-radiomic pipelines to GBM patient CT scans (n = 10), identifying similar trends in tumour-specific feature intensities (E.g. 'glszm Zone Entropy'), thereby suggesting a mouse-to-human species conservation (a conservation of radiomic features across species). Thirdly, comparison of features across timepoints identify features which support preclinical tumour detection earlier than is possible by visual assessment of CT scans. This work establishes robust, preclinical CT-radiomic pipelines and describes the application of CE-CT for in-depth orthotopic brain tumour monitoring. Overall we provide evidence for the role of pre-clinical 'discovery' radiomics in the neuro-oncology space.


Assuntos
Neoplasias Encefálicas , Radiômica , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Encefálicas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
16.
Radiother Oncol ; 197: 110338, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782301

RESUMO

BACKGROUND: Volume of interest (VOI) segmentation is a crucial step for Radiomics analyses and radiotherapy (RT) treatment planning. Because it can be time-consuming and subject to inter-observer variability, we developed and tested a Deep Learning-based automatic segmentation (DLBAS) algorithm to reproducibly predict the primary gross tumor as VOI for Radiomics analyses in extremity soft tissue sarcomas (STS). METHODS: A DLBAS algorithm was trained on a cohort of 157 patients and externally tested on an independent cohort of 87 patients using contrast-enhanced MRI. Manual tumor delineations by a radiation oncologist served as ground truths (GTs). A benchmark study with 20 cases from the test cohort compared the DLBAS predictions against manual VOI segmentations of two residents (ERs) and clinical delineations of two radiation oncologists (ROs). The ROs rated DLBAS predictions regarding their direct applicability. RESULTS: The DLBAS achieved a median dice similarity coefficient (DSC) of 0.88 against the GTs in the entire test cohort (interquartile range (IQR): 0.11) and a median DSC of 0.89 (IQR 0.07) and 0.82 (IQR 0.10) in comparison to ERs and ROs, respectively. Radiomics feature stability was high with a median intraclass correlation coefficient of 0.97, 0.95 and 0.94 for GTs, ERs, and ROs, respectively. DLBAS predictions were deemed clinically suitable by the two ROs in 35% and 20% of cases, respectively. CONCLUSION: The results demonstrate that the DLBAS algorithm provides reproducible VOI predictions for radiomics feature extraction. Variability remains regarding direct clinical applicability of predictions for RT treatment planning.

17.
Neural Netw ; 165: 119-134, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285729

RESUMO

Deep learning (DL) applied to breast tissue segmentation in magnetic resonance imaging (MRI) has received increased attention in the last decade, however, the domain shift which arises from different vendors, acquisition protocols, and biological heterogeneity, remains an important but challenging obstacle on the path towards clinical implementation. In this paper, we propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation (MSCDA) framework to address this issue in an unsupervised manner. Our approach incorporates self-training with contrastive learning to align feature representations between domains. In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts to better exploit the underlying semantic information of the image at different levels. To resolve the data imbalance problem, we utilize a category-wise cross-domain sampling strategy to sample anchors from target images and build a hybrid memory bank to store samples from source images. We have validated MSCDA with a challenging task of cross-domain breast MRI segmentation between datasets of healthy volunteers and invasive breast cancer patients. Extensive experiments show that MSCDA effectively improves the model's feature alignment capabilities between domains, outperforming state-of-the-art methods. Furthermore, the framework is shown to be label-efficient, achieving good performance with a smaller source dataset. The code is publicly available at https://github.com/ShengKuangCN/MSCDA.


Assuntos
Neoplasias da Mama , Semântica , Humanos , Feminino , Imageamento por Ressonância Magnética , Neoplasias da Mama/diagnóstico por imagem , Voluntários Saudáveis , Processamento de Imagem Assistida por Computador
18.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046593

RESUMO

Automatic delineation and detection of the primary tumour (GTVp) and lymph nodes (GTVn) using PET and CT in head and neck cancer and recurrence-free survival prediction can be useful for diagnosis and patient risk stratification. We used data from nine different centres, with 524 and 359 cases used for training and testing, respectively. We utilised posterior sampling of the weight space in the proposed segmentation model to estimate the uncertainty for false positive reduction. We explored the prognostic potential of radiomics features extracted from the predicted GTVp and GTVn in PET and CT for recurrence-free survival prediction and used SHAP analysis for explainability. We evaluated the bias of models with respect to age, gender, chemotherapy, HPV status, and lesion size. We achieved an aggregate Dice score of 0.774 and 0.760 on the test set for GTVp and GTVn, respectively. We observed a per image false positive reduction of 19.5% and 7.14% using the uncertainty threshold for GTVp and GTVn, respectively. Radiomics features extracted from GTVn in PET and from both GTVp and GTVn in CT are the most prognostic, and our model achieves a C-index of 0.672 on the test set. Our framework incorporates uncertainty estimation, fairness, and explainability, demonstrating the potential for accurate detection and risk stratification.

19.
Cancers (Basel) ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958476

RESUMO

OBJECTIVE: The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC). METHODS: A total of 345 consecutive patients were enrolled. A five-fold cross-validation was performed during training, and the models were evaluated in the independent test cohort. A multi-patch radiomics model was established based on the 2D-SWE images for predicting symptomatic PHLF. Clinical features were incorporated into the models to train the clinical-radiomics model. The radiomics model and the clinical-radiomics model were compared with the clinical model comprising clinical variables and other clinical predictive indices, including the model for end-stage liver disease (MELD) score and albumin-bilirubin (ALBI) score. Shapley Additive exPlanations (SHAP) was used for post hoc interpretability of the radiomics model. RESULTS: The clinical-radiomics model achieved an AUC of 0.867 (95% CI 0.787-0.947) in the five-fold cross-validation, and this score was higher than that of the clinical model (AUC: 0.809; 95% CI: 0.715-0.902) and the radiomics model (AUC: 0.746; 95% CI: 0.681-0.811). The clinical-radiomics model showed an AUC of 0.822 in the test cohort, higher than that of the clinical model (AUC: 0.684, p = 0.007), radiomics model (AUC: 0.784, p = 0.415), MELD score (AUC: 0.529, p < 0.001), and ALBI score (AUC: 0.644, p = 0.016). The SHAP analysis showed that the first-order radiomics features, including first-order maximum 64 × 64, first-order 90th percentile 64 × 64, and first-order 10th percentile 32 × 32, were the most important features for PHLF prediction. CONCLUSION: An interpretable clinical-radiomics model based on 2D-SWE and clinical variables can help in predicting symptomatic PHLF in HCC.

20.
J Pathol Inform ; 14: 100192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818020

RESUMO

Treatment of patients with oesophageal and gastric cancer (OeGC) is guided by disease stage, patient performance status and preferences. Lymph node (LN) status is one of the strongest prognostic factors for OeGC patients. However, survival varies between patients with the same disease stage and LN status. We recently showed that LN size from patients with OeGC might also have prognostic value, thus making delineations of LNs essential for size estimation and the extraction of other imaging biomarkers. We hypothesized that a machine learning workflow is able to: (1) find digital H&E stained slides containing LNs, (2) create a scoring system providing degrees of certainty for the results, and (3) delineate LNs in those images. To train and validate the pipeline, we used 1695 H&E slides from the OE02 trial. The dataset was divided into training (80%) and validation (20%). The model was tested on an external dataset of 826 H&E slides from the OE05 trial. U-Net architecture was used to generate prediction maps from which predefined features were extracted. These features were subsequently used to train an XGBoost model to determine if a region truly contained a LN. With our innovative method, the balanced accuracies of the LN detection were 0.93 on the validation dataset (0.83 on the test dataset) compared to 0.81 (0.81) on the validation (test) datasets when using the standard method of thresholding U-Net predictions to arrive at a binary mask. Our method allowed for the creation of an "uncertain" category, and partly limited false-positive predictions on the external dataset. The mean Dice score was 0.73 (0.60) per-image and 0.66 (0.48) per-LN for the validation (test) datasets. Our pipeline detects images with LNs more accurately than conventional methods, and high-throughput delineation of LNs can facilitate future LN content analyses of large datasets.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa