Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 15(2): 152-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317040

RESUMO

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Aterosclerose/terapia , Colesterol/metabolismo , Inflamação/terapia , Lipoproteínas HDL/uso terapêutico , Macrófagos/efeitos dos fármacos , Fator 3 Ativador da Transcrição/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Imunoprecipitação da Cromatina , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lipoproteínas HDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Biologia de Sistemas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
2.
Arterioscler Thromb Vasc Biol ; 43(6): 855-869, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994730

RESUMO

BACKGROUND: To characterize the effects of CSL112 (human APOA1 [apolipoprotein A1]) on the APOA1 exchange rate (AER) and the relationships with specific HDL (high-density lipoprotein) subpopulations when administered in the 90-day high-risk period post-acute myocardial infarction. METHODS: A subset of patients (n=50) from the AEGIS-I (ApoA-I Event Reducing in Ischemic Syndromes I) study received either placebo or CSL112 post-acute myocardial infarction. AER was measured in AEGIS-I plasma samples incubated with lipid-sensitive fluorescent APOA1 reporter. HDL particle size distribution was assessed by native gel electrophoresis followed by fluorescent imaging and detection of APOA1 and SAA (serum amyloid A) by immunoblotting. RESULTS: CSL112 infusion increased AER peaking at 2 hours and returning to baseline 24 hours post-infusion. AER correlated with cholesterol efflux capacity (r=0.49), HDL-cholesterol (r=0.30), APOA1 (r=0.48), and phospholipids (r=0.48; all P<0.001) over all time points. Mechanistically, changes in cholesterol efflux capacity and AER induced by CSL112 reflected HDL particle remodeling resulting in increased small HDL species that are highly active in mediating ABCA1 (ATP-binding cassette transporter 1)-dependent efflux, and large HDL species with high capacity for APOA1 exchange. The lipid-sensitive APOA1 reporter predominantly exchanged into SAA-poor HDL particles and weakly incorporated into SAA-enriched HDL species. CONCLUSIONS: Infusion of CSL112 enhances metrics of HDL functionality in patients with acute myocardial infarction. This study demonstrates that in post-acute myocardial infarction patients, HDL-APOA1 exchange involves specific SAA-poor HDL populations. Our data suggest that progressive enrichment of HDL with SAA may generate dysfunctional particles with impaired HDL-APOA1 exchange capacity, and that infusion of CSL112 improves the functional status of HDL with respect to HDL-APOA1 exchange. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02108262.


Assuntos
Apolipoproteína A-I , Infarto do Miocárdio , Humanos , Colesterol , Proteína Amiloide A Sérica , Síndrome , Lipoproteínas HDL , HDL-Colesterol , Infarto do Miocárdio/tratamento farmacológico
3.
J Hepatol ; 78(5): 901-913, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36717026

RESUMO

BACKGROUND & AIMS: Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a common comorbidity in type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD is complex and involves the crosstalk between the liver and the white adipose tissue (WAT). Vascular endothelial growth factor B (VEGF-B) has been shown to control tissue lipid accumulation by regulating the transport properties of the vasculature. The role of VEGF-B signaling and the contribution to hepatic steatosis and NAFLD in T2DM is currently not understood. METHODS: C57BL/6 J mice treated with a neutralizing antibody against VEGF-B, or mice with adipocyte-specific overexpression or under-expression of VEGF-B (AdipoqCre+/VEGF-BTG/+ mice and AdipoqCre+/Vegfbfl/+mice) were subjected to a 6-month high-fat diet (HFD), or chow-diet, whereafter NAFLD development was assessed. VEGF-B expression was analysed in WAT biopsies from patients with obesity and NAFLD in a pre-existing clinical cohort (n = 24 patients with NAFLD and n = 24 without NAFLD) and correlated to clinicopathological features. RESULTS: Pharmacological inhibition of VEGF-B signaling in diabetic mice reduced hepatic steatosis and NAFLD by blocking WAT lipolysis. Mechanistically we show, by using HFD-fed AdipoqCre+/VEGF-BTG/+ mice and HFD-fed AdipoqCre+/Vegfbfl/+mice, that inhibition of VEGF-B signaling targets lipolysis in adipocytes. Reducing VEGF-B signaling ameliorated NAFLD by decreasing WAT inflammation, resolving WAT insulin resistance, and lowering the activity of the hormone sensitive lipase. Analyses of human WAT biopsies from individuals with NAFLD provided evidence supporting the contribution of VEGF-B signaling to NAFLD development. VEGF-B expression levels in adipocytes from two WAT depots correlated with development of dysfunctional WAT and NAFLD in humans. CONCLUSIONS: Taken together, our data from mouse models and humans suggest that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. IMPACT AND IMPLICATIONS: Non-alcoholic fatty liver disease (NAFLD) is a common comorbidity in type 2 diabetes mellitus (T2DM) and has a global prevalence of between 25-29%. There are currently no approved drugs for NAFLD, and given the scale of the ongoing diabetes epidemics, there is an urgent need to identify new treatment options. Our work suggests that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. The neutralizing anti-VEGF-B antibody, which was used in this study, has already entered clinical trials for patients with diabetes. Therefore, we believe that our results are of great general interest to a broad audience, including patients and patient organizations, the medical community, academia, the life science industry and the public.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipólise , Fator B de Crescimento do Endotélio Vascular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Fígado/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/metabolismo
4.
Curr Atheroscler Rep ; 24(7): 585-597, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524914

RESUMO

PURPOSE OF REVIEW: The elevated adverse cardiovascular event rate among patients with low high-density lipoprotein cholesterol (HDL-C) formed the basis for the hypothesis that elevating HDL-C would reduce those events. Attempts to raise endogenous HDL-C levels, however, have consistently failed to show improvements in cardiovascular outcomes. However, steady-state HDL-C concentration does not reflect the function of this complex family of particles. Indeed, HDL functions correlate only weakly with serum HDL-C concentration. Thus, the field has pivoted from simply raising the quantity of HDL-C to a focus on improving the putative anti-atherosclerotic functions of HDL particles. Such functions include the ability of HDL to promote the efflux of cholesterol from cholesterol-laden macrophages. Apolipoprotein A-I (apoA-I), the signature apoprotein of HDL, may facilitate the removal of cholesterol from atherosclerotic plaque, reduce the lesional lipid content and might thus stabilize vulnerable plaques, thereby reducing the risk of cardiac events. Infusion of preparations of apoA-I may improve cholesterol efflux capacity (CEC). This review summarizes the development of apoA-I therapies, compares their structural and functional properties and discusses the findings of previous studies including their limitations, and how CSL112, currently being tested in a phase III trial, may overcome these challenges. RECENT FINDINGS: Three major ApoA-I-based approaches (MDCO-216, CER-001, and CSL111/CSL112) have aimed to enhance reverse cholesterol transport. These three therapies differ considerably in both lipid and protein composition. MDCO-216 contains recombinant ApoA-I Milano, CER-001 contains recombinant wild-type human ApoA-I, and CSL111/CSL112 contains native ApoA-I isolated from human plasma. Two of the three agents studied to date (apoA-1 Milano and CER-001) have undergone evaluation by intravascular ultrasound imaging, a technique that gauges lesion volume well but does not assess other important variables that may relate to clinical outcomes. ApoA-1 Milano and CER-001 reduce lecithin-cholesterol acyltransferase (LCAT) activity, potentially impairing the function of HDL in reverse cholesterol transport. Furthermore, apoA-I Milano can compete with and alter the function of the recipient's endogenous apoA-I. In contrast to these agents, CSL112, a particle formulated using human plasma apoA-I and phosphatidylcholine, increases LCAT activity and does not lead to the malfunction of endogenous apoA-I. CSL112 robustly increases cholesterol efflux, promotes reverse cholesterol transport, and now is being tested in a phase III clinical trial. Phase II-b studies of MDCO-216 and CER-001 failed to produce a significant reduction in coronary plaque volume as assessed by IVUS. However, the investigation to determine whether the direct infusion of a reconstituted apoA-I reduces post-myocardial infarction coronary events is being tested using CSL112, which is dosed at a higher level than MDCO-216 and CER-001 and has more favorable pharmacodynamics.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/uso terapêutico , Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , HDL-Colesterol , Humanos
5.
Toxicol Appl Pharmacol ; 422: 115557, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932462

RESUMO

CSL112 (apolipoprotein A-I, apo AI [human]) is an investigational drug in Phase 3 development for risk reduction of early recurrent cardiovascular events following an acute myocardial infarction (AMI). Although CSL112 is known to be well tolerated with a regimen of four weekly 6 g intravenous infusions after AMI, high doses of reconstituted apo AI preparations can transiently elevate liver enzymes in rats, raising the possibility of additive liver toxicity and toxicokinetic (TK) effects upon co-administration with cholesterol-lowering drugs, i.e., HMG-CoA reductase and proprotein convertase subtilisin/kexin type 9 inhibitors. We performed a toxicity and TK study in CD rats assigned to eleven treatment groups, including two dose levels of intravenous (IV) CSL112 (140 mg/kg, low-dose; 600 mg/kg, high-dose) administered as a single dose, alone or with intravenous alirocumab 50 mg/kg/week and/or oral atorvastatin 10 mg/kg/day. In addition, control groups of atorvastatin and alirocumab alone and in combination were investigated. Results showed some liver enzyme elevations (remaining <2-fold of baseline) related to administration of CSL112 alone. There was limited evidence of an additive effect of CSL112 on liver enzymes when combined, at either dose level, with alirocumab and/or atorvastatin, and histology revealed no evidence of an increased incidence or severity of hepatocyte vacuolation compared to the control treatments. Co-administration of the study drugs had minimal effect on their respective exposure levels, and on levels of total cholesterol and high-density lipoprotein cholesterol. These data support concomitant use of CSL112 with alirocumab and/or atorvastatin with no anticipated negative impact on liver safety and TK.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Anticolesterolemiantes/toxicidade , Atorvastatina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lipoproteínas HDL/toxicidade , Fígado/efeitos dos fármacos , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Anticolesterolemiantes/farmacocinética , Atorvastatina/farmacocinética , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colesterol/sangue , Interações Medicamentosas , Feminino , Lipoproteínas HDL/farmacocinética , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Medição de Risco , Testes de Toxicidade , Toxicocinética
6.
Br J Clin Pharmacol ; 87(6): 2558-2571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33217027

RESUMO

AIMS: To characterize relationships between apolipoprotein A-I (apoA-I) exposure and cholesterol efflux capacity (CEC) and covariate effects following CSL112 (apoA-I [human]) administration in an integrated population including acute myocardial infarction (AMI) patients. METHODS: A pharmacometric analysis utilized data from seven clinical trials, including patients with AMI, subjects with renal impairment and healthy subjects. A population pharmacokinetic (PK) analysis was performed to relate CSL112 doses to changes in apoA-I plasma concentrations. Covariate analysis was conducted to identify sources of variability in apoA-I exposure. Exposure-response modeling was conducted to describe the relationship between apoA-I exposure and total or ATP binding cassette transporter A1-(ABCA1)-dependent CEC and to identify clinical predictors of CEC. RESULTS: A two-compartment model described apoA-I PK. ApoA-I clearance was slightly lower in subjects with AMI, whereas baseline apoA-I was marginally higher in female and Japanese subjects. Covariate effects on apoA-I exposure were in the order of 10% and thus not clinically relevant. The relationships between apoA-I exposure and CECs were described by nonlinear models. Simulations showed CEC elevation resulting from apoA-I exposure increment was comparable in AMI and non-AMI subjects; no covariate had clinically meaningful effects on CEC. Simulations also demonstrated that CEC in patients with AMI post 6 g CSL112 dosing was substantially elevated compared to placebo and lower dose levels. CONCLUSIONS: The model-based exposure-response analysis demonstrated, irrespective of body weight, sex and race, that fixed 6 g CSL112 dosing causes a desired CEC elevation, which may benefit AMI patients by potentially reducing early recurrent cardiovascular event risk.


Assuntos
Apolipoproteína A-I , Infarto do Miocárdio , Colesterol , Feminino , Humanos , Lipoproteínas HDL , Masculino , Infarto do Miocárdio/tratamento farmacológico
7.
Arterioscler Thromb Vasc Biol ; 40(5): 1182-1194, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32131613

RESUMO

OBJECTIVE: To characterize the fate of protein and lipid in nascent HDL (high-density lipoprotein) in plasma and explore the role of interaction between nascent HDL and mature HDL in promoting ABCA1 (ATP-binding cassette transporter 1)-dependent cholesterol efflux. Approach and Results: Two discoidal species, nascent HDL produced by RAW264.7 cells expressing ABCA1 (LpA-I [apo AI containing particles formed by incubating ABCA1-expressing cells with apo AI]), and CSL112, human apo AI (apolipoprotein AI) reconstituted with phospholipids, were used for in vitro incubations with human plasma or purified spherical plasma HDL. Fluorescent labeling and biotinylation of HDL were employed to follow the redistribution of cholesterol and apo AI, cholesterol efflux was measured using cholesterol-loaded cells. We show that both nascent LpA-I and CSL112 can rapidly fuse with spherical HDL. Redistribution of the apo AI molecules and cholesterol after particle fusion leads to the formation of (1) enlarged, remodeled, lipid-rich HDL particles carrying lipid and apo AI from LpA-I and (2) lipid-poor apo AI particles carrying apo AI from both discs and spheres. The interaction of discs and spheres led to a greater than additive elevation of ABCA1-dependent cholesterol efflux. CONCLUSIONS: These data demonstrate that although newly formed discs are relatively poor substrates for ABCA1, they can interact with spheres to produce lipid-poor apo AI, a much better substrate for ABCA1. Because the lipid-poor apo AI generated in this interaction can itself become discoid by the action of ABCA1, cycles of cholesterol efflux and disc-sphere fusion may result in net ABCA1-dependent transfer of cholesterol from cells to HDL spheres. This process may be of particular importance in atherosclerotic plaque where cholesterol acceptors may be limiting.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , HDL-Colesterol/sangue , Macrófagos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Apolipoproteína A-I/sangue , Transporte Biológico , HDL-Colesterol/química , Humanos , Cinética , Lipoproteínas HDL/sangue , Camundongos , Tamanho da Partícula , Células RAW 264.7
8.
Arterioscler Thromb Vasc Biol ; 38(4): 953-963, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437574

RESUMO

OBJECTIVE: CSL112 (apolipoprotein A-I [apoA-I; human]) is a novel formulation of apoA-I in development for reduction of early recurrent cardiovascular events after acute myocardial infarction. Cholesterol efflux capacity (CEC) is a marker of high-density lipoprotein (HDL) function that is strongly correlated with incident cardiovascular disease. Impaired CEC has been observed in patients with coronary heart disease. Here, we determined whether infused apoA-I improves CEC when administered to patients with stable atherosclerotic disease versus healthy volunteers. APPROACH AND RESULTS: Measurements of apoA-I, HDL unesterified cholesterol, HDL esterified cholesterol, pre-ß1-HDL, and CEC were determined in samples from patients with stable atherosclerotic disease before and after intravenous administration of CSL112. These measures were compared with 2 prior studies in healthy volunteers for differences in CEC at baseline and after CSL112 infusion. Patients with stable atherosclerotic disease exhibited significantly lower ATP-binding cassette transporter 1-mediated CEC at baseline (P<0.0001) despite slightly higher apoA-I levels when compared with healthy individuals (2 phase 1 studies pooled; P≤0.05), suggesting impaired HDL function. However, no differences were observed in apoA-I pharmacokinetics or in pre-ß1-HDL (P=0.5) or CEC (P=0.1) after infusion of CSL112. Similar elevation in CEC was observed in patients with low or high baseline HDL function (based on tertiles of apoA-I-normalized CEC; P=0.1242). These observations were extended and confirmed using cholesterol esterification as an additional measure. CONCLUSIONS: CSL112 shows comparable, strong, and immediate effects on CEC despite underlying cardiovascular disease. CSL112 is, therefore, a promising novel therapy for lowering the burden of atherosclerosis and reducing the risk of recurrent cardiovascular events.


Assuntos
Anticolesterolemiantes/uso terapêutico , Apolipoproteína A-I/uso terapêutico , Aterosclerose/tratamento farmacológico , Colesterol/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/uso terapêutico , Adolescente , Adulto , Idoso , Anticolesterolemiantes/sangue , Anticolesterolemiantes/farmacocinética , Apolipoproteína A-I/sangue , Apolipoproteína A-I/farmacocinética , Aterosclerose/sangue , Aterosclerose/diagnóstico , Biomarcadores/sangue , HDL-Colesterol/sangue , Feminino , Voluntários Saudáveis , Lipoproteínas de Alta Densidade Pré-beta/sangue , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas HDL/farmacocinética , Masculino , Pessoa de Meia-Idade , Queensland , Austrália do Sul , Resultado do Tratamento , Estados Unidos , Adulto Jovem
9.
J Immunol ; 198(10): 3775-3789, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28483986

RESUMO

Scavenger receptors constitute a large family of proteins that are structurally diverse and participate in a wide range of biological functions. These receptors are expressed predominantly by myeloid cells and recognize a diverse variety of ligands including endogenous and modified host-derived molecules and microbial pathogens. There are currently eight classes of scavenger receptors, many of which have multiple names, leading to inconsistencies and confusion in the literature. To address this problem, a workshop was organized by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, to help develop a clear definition of scavenger receptors and a standardized nomenclature based on that definition. Fifteen experts in the scavenger receptor field attended the workshop and, after extensive discussion, reached a consensus regarding the definition of scavenger receptors and a proposed scavenger receptor nomenclature. Scavenger receptors were defined as cell surface receptors that typically bind multiple ligands and promote the removal of nonself or altered-self targets. They often function by mechanisms that include endocytosis, phagocytosis, adhesion, and signaling that ultimately lead to the elimination of degraded or harmful substances. Based on this definition, nomenclature and classification of these receptors into 10 classes were proposed. This classification was discussed at three national meetings and input from participants at these meetings was requested. The following manuscript is a consensus statement that combines the recommendations of the initial workshop and incorporates the input received from the participants at the three national meetings.


Assuntos
Receptores Depuradores/classificação , Receptores Depuradores/fisiologia , Animais , Endocitose , Humanos , Ligantes , Camundongos , National Institute of Allergy and Infectious Diseases (U.S.)/normas , Fagocitose , Receptores Imunológicos/fisiologia , Receptores Depuradores Classe A/fisiologia , Transdução de Sinais , Terminologia como Assunto , Estados Unidos
10.
J Lipid Res ; 59(9): 1649-1659, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29991652

RESUMO

Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.


Assuntos
Apolipoproteína A-I/metabolismo , Gliose/metabolismo , Gliose/patologia , Hipotálamo/patologia , Lipoproteínas HDL/sangue , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Gliose/sangue , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Fosforilação Oxidativa , Fenótipo
11.
Circ Res ; 119(6): 751-63, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436846

RESUMO

RATIONALE: CSL112, human apolipoprotein A-I (apoA-I) reconstituted with phosphatidylcholine, is known to cause a dramatic rise in small high-density lipoprotein (HDL). OBJECTIVE: To explore the mechanisms by which the formation of small HDL particles is induced by CSL112. METHODS AND RESULTS: Infusion of CSL112 into humans caused elevation of 2 small diameter HDL fractions and 1 large diameter fraction. Ex vivo studies showed that this remodeling does not depend on lipid transfer proteins or lipases. Rather, interaction of CSL112 with purified HDL spontaneously gave rise to 3 HDL species: a large, spherical species composed of apoA-I from native HDL and CSL112; a small, disc-shaped species composed of apoA-I from CSL112, but smaller because of the loss of phospholipids; and the smallest species, lipid-poor apoA-I composed of apoA-I from HDL and CSL112. Time-course studies suggest that remodeling occurs by an initial fusion of CSL112 with HDL and subsequent fission leading to the smaller forms. Functional studies showed that ATP-binding cassette transporter 1-dependent cholesterol efflux and anti-inflammatory effects in whole blood were carried by the 2 small species with little activity in the large species. In contrast, the ability to inactivate lipid hydroperoxides in oxidized low-density lipoprotein was carried predominantly by the 2 largest species and was low in lipid-poor apoA-I. CONCLUSIONS: We have described a mechanism for the formation of small, highly functional HDL species involving spontaneous fusion of discoidal HDL with spherical HDL and subsequent fission. Similar remodeling is likely to occur during the life cycle of apoA-I in vivo.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Linhagem Celular , Humanos , Infusões Intravenosas , Lipoproteínas HDL/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
12.
J Thromb Thrombolysis ; 45(4): 469-476, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29582212

RESUMO

CSL112 (Apolipoprotein A-I [Human]), an infusible, plasma-derived apolipoprotein A-I, is being developed to reduce cardiovascular events following acute myocardial infarction (AMI). A predecessor compound (CSL111) demonstrated a potential antiplatelet effect. A phase 2a multicentre, randomised, single-ascending dose study in patients with stable atherosclerotic disease receiving dual antiplatelet therapy (DAPT) assessed the potential additive effects of CSL112 administration on platelet function and increase bleeding risk in the subacute period after AMI. Patients (n = 44) on aspirin (75-325 mg/day) and either clopidogrel (75 mg/day, n = 37) or prasugrel (10 mg/day, n = 7) for > 30 days alongside standard-of-care therapy were randomised to a single dose of placebo or CSL112: 1.7, 3.4, or 6.8 g. Light transmission aggregometry was used to assess platelet aggregation in response to 2 mM arachidonic acid, 5 and 20 µM adenosine diphosphate, and 4 µg/mL collagen, pre-dose (baseline) and up to 48 h post-dosing. Compared to placebo, CSL112 had no clinically meaningful time- or dose-dependent effects on maximum platelet aggregation in response to any agonist, by either dose or renal function subgroup (p > 0.05). Coagulation parameters showed little variation over time or between treatment groups (p > 0.05). CSL112, when co-administered with standard DAPT, did not significantly influence platelet aggregation in response to agonists and is, therefore, not expected to significantly increase bleeding risk when administered with antiplatelet therapies.


Assuntos
Aterosclerose/tratamento farmacológico , Lipoproteínas HDL/administração & dosagem , Agregação Plaquetária/efeitos dos fármacos , Adulto , Idoso , Apolipoproteína A-I , Quimioterapia Combinada , Feminino , Hemorragia/induzido quimicamente , Humanos , Lipoproteínas HDL/farmacologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/tratamento farmacológico , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Testes de Função Plaquetária
13.
Biochim Biophys Acta ; 1862(5): 1027-36, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26454209

RESUMO

Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aß) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aß40 and Aß42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aß levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aß levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aß pool. That systemic administration of rHDL can acutely modify brain Aß levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/terapia , Apolipoproteína A-I/uso terapêutico , Encéfalo/metabolismo , Lipoproteínas HDL/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/sangue , Amiloidose/sangue , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Apolipoproteína A-I/administração & dosagem , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lipoproteínas HDL/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/sangue
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 890-900, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28529180

RESUMO

AIMS: High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. METHODS: Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. RESULTS: rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. CONCLUSIONS: Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.


Assuntos
Antioxidantes/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Oxirredução , Fosfatidilcolinas/metabolismo , Células RAW 264.7
15.
J Immunol ; 195(1): 257-64, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26026058

RESUMO

Chronic inflammation of the arterial wall is a key element in the development of atherosclerosis, and cholesterol crystals (CC) that accumulate in plaques are associated with initiation and progression of the disease. We recently revealed a link between the complement system and CC-induced inflammasome caspase-1 activation, showing that the complement system is a key trigger in CC-induced inflammation. HDL exhibits cardioprotective and anti-inflammatory properties thought to explain its inverse correlation to cardiovascular risk. In this study, we sought to determine the effect of reconstituted HDL (rHDL) on CC-induced inflammation in a human whole blood model. rHDL bound to CC and inhibited the CC-induced complement activation as measured by soluble terminal C5b-9 formation and C3c deposition on the CC surface. rHDL attenuated the amount of CC-induced complement receptor 3 (CD11b/CD18) expression on monocytes and granulocytes, as well as reactive oxygen species generation. Moreover, addition of CC to whole blood resulted in release of proinflammatory cytokines that were inhibited by rHDL. Our results support and extend the notion that CC are potent triggers of inflammation, and that rHDL may have a beneficial role in controlling the CC-induced inflammatory responses by inhibiting complement deposition on the crystals.


Assuntos
Colesterol/efeitos adversos , Ativação do Complemento/efeitos dos fármacos , Lipoproteínas HDL/farmacologia , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/imunologia , Antígeno CD11b/imunologia , Antígenos CD18/imunologia , Complemento C3c/antagonistas & inibidores , Complemento C3c/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Cristalização , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia
16.
Nature ; 464(7293): 1357-61, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20428172

RESUMO

The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1alpha/beta-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas de Transporte/metabolismo , Colesterol/química , Colesterol/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Aterosclerose/induzido quimicamente , Transplante de Medula Óssea , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Catepsina B/metabolismo , Catepsina L/metabolismo , Colesterol/farmacologia , Cristalização , Proteínas do Citoesqueleto/deficiência , Dieta Aterogênica , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1/deficiência , Interleucina-18/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cavidade Peritoneal/patologia , Fagócitos/efeitos dos fármacos , Fagócitos/patologia , Fagócitos/fisiologia , Receptores de LDL/deficiência , Fatores de Tempo
17.
J Appl Toxicol ; 36(8): 1038-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26651060

RESUMO

Human apolipoprotein A-I preparations reconstituted with phospholipids (reconstituted high-density lipoprotein [HDL]) have been used in a large number of animal and human studies to investigate the physiological role of apolipoprotein A-I. Several of these studies observed that intravenous infusion of reconstituted HDL might cause transient elevations in plasma levels of hepatic enzymes. Here we describe the mechanism of this enzyme release. Observations from several animal models and in vitro studies suggest that the extent of hepatic transaminase release (alanine aminotransferase [ALT]) correlates with the movement of hepatic cholesterol into the blood after infusion. Both the amount of ALT release and cholesterol movement were dependent on the amount and type of phospholipid present in the reconstituted HDL. As cholesterol is known to dissolve readily in phospholipid, an HDL preparation was loaded with cholesterol before infusion into rats to assess the role of diffusion of cholesterol out of the liver and into the reconstituted HDL. Cholesterol-loaded HDL failed to withdraw cholesterol from tissues and subsequently failed to cause ALT release. To investigate further the role of cholesterol diffusion, we employed mice deficient in SR-BI, a transporter that facilitates spontaneous movement of cholesterol between cell membranes and HDL. These mice showed substantially lower movement of cholesterol into the blood and markedly lower ALT release. We conclude that initial depletion of hepatic cholesterol initiates transient ALT release in response to infusion of reconstituted HDL. This effect may be controlled by appropriate choice of the type and amount of phospholipid in reconstituted HDL. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Alanina Transaminase/sangue , HDL-Colesterol/metabolismo , Fígado/metabolismo , Fosfolipídeos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Administração Intravenosa , Animais , Apolipoproteína A-I/sangue , Antígenos CD36/genética , Antígenos CD36/metabolismo , Colesterol/sangue , HDL-Colesterol/sangue , Cães , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Ratos , Ratos Sprague-Dawley
18.
Arterioscler Thromb Vasc Biol ; 34(9): 2106-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969776

RESUMO

OBJECTIVE: The ability of apolipoprotein A-I (apoA-I) to transport cholesterol from atherosclerotic plaque is thought to underlie its inverse correlation with cardiovascular risk. To gauge the potential of infused apoA-I to transport cholesterol, we quantified cholesterol transport markers in human subjects infused with a novel formulation of apoA-I (CSL112). APPROACH AND RESULTS: CSL112 was infused into human subjects in single (57 subjects) and multiple (36 subjects) ascending dose trials. Pharmacokinetic and biomarker assessments were conducted before and after infusions. CSL112 caused an immediate, up to 3-fold elevation of apoA-I and subsequent movement of tissue cholesterol into plasma. Cholesterol appeared first as unesterified cholesterol in the high-density lipoprotein (HDL) fraction and was promptly esterified by lecithin cholesterol acyltransferase. HDL cholesterol increased up to 81±16.5%. Underlying this movement of cholesterol was an immediate and strong rise in the ability of plasma to promote cholesterol efflux from cells ex vivo. CSL112 had its greatest impact on the fraction of efflux mediated by ATP-binding cassette transporter A1 (ABCA1), a cholesterol transporter induced in cholesterol-loaded tissues such as plaque. ABCA1-dependent efflux capacity increased ≤630±421% and total efflux capacity by ≤192±40%. In keeping with this finding, we observed a profound rise in very small HDL, also known as preß1-HDL, the preferred substrate for ABCA1. Very small HDL increased ≤3596±941%. Elevations in apoA-I, cholesterol efflux, and very small HDL were dose-proportional over a wide range. No significant changes in atherogenic lipids were observed at any dose. CONCLUSIONS: Infusion of CSL112 elevates the ability of plasma to withdraw cholesterol from cells. Preferential elevation of ABCA1-dependent efflux may target atherosclerotic plaque for cholesterol removal, making CSL112 a promising candidate therapy for acute coronary syndrome.


Assuntos
Colesterol/sangue , Lipoproteínas HDL/farmacologia , Transportador 1 de Cassete de Ligação de ATP/sangue , Adulto , Apolipoproteína A-I/metabolismo , Transporte Biológico , Biomarcadores , Ésteres do Colesterol/metabolismo , HDL-Colesterol/sangue , Relação Dose-Resposta a Droga , Feminino , Humanos , Infusões Intravenosas , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/farmacocinética , Masculino , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Adulto Jovem
19.
Arterioscler Thromb Vasc Biol ; 33(9): 2202-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23868939

RESUMO

OBJECTIVE: The ability of high-density lipoprotein (HDL) to remove cholesterol from atherosclerotic plaque is thought to underlie its inverse correlation with cardiovascular risk. Our objective was to produce and characterize a human apolipoprotein AI (apoA-I) product optimized to treat clinical atherosclerotic disease. APPROACH AND RESULTS: A new formulation of full length, plasma-derived human apoA-I termed CSL112 was designed to maximize the cholesterol efflux from cells and exhibit favorable pharmacological properties. CSL112 is a disc-shaped particle that strongly elevates cholesterol esterification and shows good pharmacokinetics in rabbits. Infusion of CSL112 into rabbits caused a strong and immediate increase in the ATP binding cassette transporter A1 (ABCA1)-dependent efflux capacity of plasma, an increase in plasma unesterified cholesterol and rapid subsequent cholesterol esterification. In the presence of human plasma, CSL112 was significantly more potent than native HDL at enhancing cholesterol efflux from macrophages, and the efflux elevation was predominantly via the ABCA1 transporter. Consistent with this observation, addition of CSL112 to plasma led to generation of high levels of HDL-VS, a favorable substrate for ABCA1. The lipid profile of plasma did not affect these behaviors. In studies with whole human blood, CSL112 reduced expression of intercellular adhesion molecule 1 and cytokine secretion, and as with cholesterol efflux, these activities were substantially greater than those of native HDL assayed in parallel. CONCLUSIONS: CSL112 has favorable pharmacological properties and strongly elevates the ability of plasma to withdraw cholesterol from cells. Preferential elevation of ABCA1-dependent efflux may target atherosclerotic plaque for cholesterol removal and this property makes CSL112 a promising candidate therapy for acute coronary syndrome.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Anticolesterolemiantes/farmacologia , Apolipoproteína A-I/farmacologia , HDL-Colesterol/sangue , Colesterol/sangue , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/sangue , Animais , Anti-Inflamatórios/farmacologia , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/sangue , Anticolesterolemiantes/farmacocinética , Apolipoproteína A-I/administração & dosagem , Apolipoproteína A-I/sangue , Apolipoproteína A-I/farmacocinética , Transporte Biológico , Linhagem Celular , Ésteres do Colesterol/sangue , Citocinas/sangue , Feminino , Humanos , Mediadores da Inflamação/sangue , Infusões Intravenosas , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/sangue , Lipoproteínas HDL/farmacocinética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Tamanho da Partícula , Coelhos , Regulação para Cima
20.
Physiol Genomics ; 45(1): 47-57, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23170035

RESUMO

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is implicated in the etiology of metabolic syndrome. We previously showed that pharmacological inhibition of 11ß-HSD1 ameliorated multiple facets of metabolic syndrome and attenuated atherosclerosis in ApoE-/- mice. However, the molecular mechanism underlying the atheroprotective effect was not clear. In this study, we tested whether and how 11ß-HSD1 inhibition affects vascular inflammation, a major culprit for atherosclerosis and its associated complications. ApoE-/- mice were treated with an 11ß-HSD1 inhibitor for various periods of time. Plasma lipids and aortic cholesterol accumulation were quantified. Several microarray studies were carried out to examine the effect of 11ß-HSD1 inhibition on gene expression in atherosclerotic tissues. Our data suggest 11ß-HSD1 inhibition can directly modulate atherosclerotic plaques and attenuate atherosclerosis independently of lipid lowering effects. We identified immune response genes as the category of mRNA most significantly suppressed by 11ß-HSD1 inhibition. This anti-inflammatory effect was further confirmed in plaque macrophages and smooth muscle cells procured by laser capture microdissection. These findings in the vascular wall were corroborated by reduction in circulating MCP1 levels after 11ß-HSD1 inhibition. Taken together, our data suggest 11ß-HSD1 inhibition regulates proinflammatory gene expression in atherosclerotic tissues of ApoE-/- mice, and this effect may contribute to the attenuation of atherosclerosis in these animals.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Aterosclerose/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vasculite/tratamento farmacológico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/etiologia , Colesterol/metabolismo , Perfilação da Expressão Gênica , Genes MHC da Classe II/genética , Glucocorticoides/metabolismo , Microdissecção e Captura a Laser , Lipídeos/sangue , Camundongos , Camundongos Knockout , Análise em Microsséries , Vasculite/complicações
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa