Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 616(7955): 73-76, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020005

RESUMO

With strong reducibility and high redox potential, the hydride ion (H-) is a reactive hydrogen species and an energy carrier. Materials that conduct pure H- at ambient conditions will be enablers of advanced clean energy storage and electrochemical conversion technologies1,2. However, rare earth trihydrides, known for fast H migration, also exhibit detrimental electronic conductivity3-5. Here we show that by creating nanosized grains and defects in the lattice, the electronic conductivity of LaHx can be suppressed by more than five orders of magnitude. This transforms LaHx to a superionic conductor at -40 °C with a record high H- conductivity of 1.0 × 10-2 S cm-1 and a low diffusion barrier of 0.12 eV. A room-temperature all-solid-state hydride cell is demonstrated.

2.
J Phys Chem A ; 128(24): 4830-4837, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38850258

RESUMO

The structure of samoquasine A has long been a subject of controversy, which was resolved only upon its successful total synthesis. We examined the structures of the associated compounds using the state-of-the-art SVM-M protocol. The method accurately discriminated all putative structures historically attributed to samoquasine A from a pool of 48 isomeric structures, confirming that samoquasine A is indeed identical to perlolidine. Furthermore, by applying the SVM-M protocol to an additional pool of 67 isomeric structures, we successfully assigned a yet unknown natural product, initially misidentified as perlolidine, as a novel oxime, (E)-3H-cyclopenta[c]quinolin-3-one oxime, representing the first reported cyclone oxime-quinoline natural product.

3.
Angew Chem Int Ed Engl ; 62(26): e202302679, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106279

RESUMO

Replacing widely used organic liquid electrolytes with solid-state electrolytes (SSEs) could effectively solve the safety issues in sodium-ion batteries. Efforts on seeking novel solid-state electrolytes have been continued for decades. However, issues about SSEs still exist, such as low ionic conductivity at ambient temperature, difficulty in manufacturing, low electrochemical stability, poor compatibility with electrodes, etc. Here, sodium carbazolide (Na-CZ) and its THF-coordinated derivatives are rationally fabricated as Na+ conductors, and two of their crystal structures are successfully solved. Among these materials, THF-coordinated complexes exhibit fast Na+ conductivities, i.e., 1.20×10-4  S cm-1 and 1.95×10-3  S cm-1 at 90 °C for Na-CZ-1THF and Na-CZ-2THF, respectively, which are among the top Na+ conductors under the same condition. Furthermore, stable Na plating/stripping is observed even over 400 h cycling, showing outstanding interfacial stability and compatibility against Na electrode. More advantages such as ease of synthesis, low-cost, and cold pressing for molding can be obtained. In situ NMR results revealed that the evaporation of THF may play an essential role in the Na+ migration, where the movement of THF creates defects/vacancies and facilitates the migration of Na+ .


Assuntos
Eletrólitos , Sódio , Íons , Temperatura Baixa , Comércio
4.
J Am Chem Soc ; 144(38): 17441-17448, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36109500

RESUMO

Hydrodenitrogenation (HDN) of nitrogen-containing organic compounds such as aniline and its derivatives is of scientific interest and practical importance. Major efforts have been devoted to the development and understanding of transition metal-mediated chemical processes. Herein, we report a fundamentally different strategy using a transition metal-free material, that is, lithium hydride (LiH) enabling the hydrogenolysis of aniline to benzene and ammonia via a chemical looping approach. Aniline reacts with LiH to form lithium anilide, and subsequently, the hydrogenolysis of lithium anilide yields benzene and ammonia and regenerates LiH to complete the loop. This LiH-mediated chemical looping HDN process stands in sharp contrast to the transition metal-catalyzed or -mediated processes, which commonly lead to the complete hydrogenation of aromatic rings. A highly denitrogenated product formation rate of 2623 µmol·g-1·h-1 is achieved for the hydrogenolysis of lithium anilide at 300 °C and 10 bar H2, which exceeds the catalytic rate of transition metal catalysts. Computational studies reveal that the scission of C-N bonds is facilitated by a Li-mediated nucleophilic attack of hydride to the α-sp2C atom of aniline. This work not only provides a distinctive chemical looping route for HDN, but also opens up materials space for the denitrogenation of anilines.

5.
J Org Chem ; 87(9): 6014-6024, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35389656

RESUMO

Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are "too reactive to be selective". Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.

6.
J Am Chem Soc ; 143(49): 20891-20897, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854674

RESUMO

Selective hydrogenation of alkynes to alkenes requires a catalytic site with suitable electronic properties for modulating the adsorption and conversion of alkyne, alkene as well as dihydrogen. Here, we report a complex palladium hydride, CaPdH2, featured by electron-rich [PdH2]δ- sites that are surrounded by Ca cations that interacts with C2H2 and C2H4 via σ-bonding to Pd and unusual cation-π interaction with Ca, resulting in a much weaker chemisorption than those of Pd metal catalysts. Concomitantly, the dissociation of H2 and hydrogenation of C2Hx (x = 2-4) species experience significant energy barriers over CaPdH2, which is fundamentally different from those reported Pd-based catalysts. Such a unique catalytic environment enables CaPdH2, the very first complex transition-metal hydride catalyst, to afford a high alkene selectivity for the semihydrogenation of alkynes.

7.
Opt Express ; 28(2): 2398-2410, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121930

RESUMO

We present a numerical study of optical torque between two twisted metal nanorods due to the angular momentum of the electromagnetic field emerging from their plasmonic coupling. Our results indicate that the interaction optical torque on the nanorods can be strongly enhanced by their plasmon coupling, which highly depends on not only the gap size but also the twisted angle between the nanorods. The behaviors of the optical torque are different between two plasmon coupling modes: hybridized bonding and anti-bonding modes with different resonances. The rotations of the twisted nanorods with the bonding and anti-bonding mode excitations lead to mutually parallel and perpendicular alignments, respectively. At an incident intensity of 10 mW/µm2, the rotational potential depths are more than 30 times as large as the Brownian motion energy, enabling the optical alignments with angle fluctuations less than ∼±10°. Thus, this optical alignment of the nanoparticles with the plasmon coupling allows dynamic control of the plasmonic characteristics and functions.

8.
Opt Express ; 28(5): 7139-7151, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225948

RESUMO

In holographic data storage systems, the quality of the reconstructed data pattern is decisive and directly affects the system performance. However, noise from the optical component, electronic component and recording material deteriorates reconstruction quality. A high noise margin decoding method developed from compressed sensing technology was proposed to reduce the impact of noise in the decoding process. Compared with the conventional threshold decoding method, the proposed method is more robust to noise and more suitable for multilevel modulation. The decoding performance with five-level amplitude modulation was evaluated by both simulation and experimentation. For the combination of Gaussian noise, Rician noise and Rayleigh noise, the proposed decoding method reduces the BER of the threshold method to one-sixth with an SNR of -1 in the simulation. In the experiment, it behaves up to 8.3 times better than conventional threshold decoding.

9.
J Phys Chem A ; 124(28): 5824-5831, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32579357

RESUMO

In this study, we present a new hybrid functional denoted as xOPBE, which is optimized at the 6-311+G(2d,p) basis set and designed with a specific aim of providing accurate 13C chemical shifts. By mixing the Hartree-Fock exchange into the OPBE functional, xOPBE provides a significantly improved overall performance as compared to its parent OPBE functional, while OPBE was shown previously as an excellent functional for 13C chemical shifts. Even in the case of the 1-adamantyl cation, for which OPBE completely fails in reproducing the experimental results, xOPBE still performs very well with similar accuracy as the standard CCSD(T) method with a large basis set. Our results also demonstrate that xOPBE not only can improve quantitatively the description of the correct assignments given by OPBE but also can revert OPBE's incorrect assignments qualitatively. Thus, we would like to recommend the use of xOPBE for routine evaluations of 13C chemical shifts.

10.
J Comput Chem ; 40(9): 1038-1044, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30299551

RESUMO

Gold-catalyzed intermolecular alkyne oxidation has attracted much synthetic attention, but mostly suffering undesired over-oxidation. Recent experiments demonstrated that over-oxidation could be dramatically suppressed in zinc(II)-catalyzed intermolecular alkyne oxidation/CH functionalization. By means of first-principle density functional theory calculations, we explored the mechanism of the M-catalyzed intermolecular alkyne oxidations (M = Zn(OTf)2 and Au+ PR3 ) as well as the effects of oxidants, temperature, and metal catalysts on chemoselectivity, in an effort to disclose the origin of the extraordinary chemoselectivity pertaining to zinc catalysis. Our calculations indicate that the Zn-catalyzed intermolecular alkyne oxidation/CH functionalization proceeds by a Friedel-Crafts alkylation mechanism rather than metal carbene insertion mechanism. The chemoselectivity of CH functionalization against over-oxidation in Zn catalysis, in comparison with gold catalysis, can be jointly controlled by four factors: (1) the use of less nucleophilic N-oxide, (2) the enhanced electrophilicity and carbocationic nature of the carbenic site in the α-oxo metal carbenoid intermediate, (3) enhanced steric repulsion to incoming oxidant exerted by bulky ancillary ligand in the close nearby of the carbenic site to disfavor intermolecular over-oxidation and (4) the large negative value of activation entropy in the intermolecular over-oxidation pathway, that jointly give rise to lower activation free energy for the intramolecular cyclization/CH functionalization pathway than for the intermolecular over-oxidation pathway. © 2018 Wiley Periodicals, Inc.

11.
Nanotechnology ; 30(14): 145202, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30524073

RESUMO

High-performance material plays a crucial role in holographic data storage, which is a noteworthy technology with potential applications in the field of high capacity data storage. We report on a new kind of holographic storage material based on aluminum nanoparticles (Al NPs) dispersed phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer. Al NPs are efficiently synthesized in a monomer solvent using laser ablation in liquids without chemical precursors. It is shown that an increase in diffraction efficiency and recording sensitivity is achieved in both traditional holography and polarization holography by doping with Al NPs. After 4 h of ablation, the new material exhibited an improvement in the diffraction efficiency for both traditional holography and polarization holography from 2.85% to 57.15% and from 0.6% to 4.07%, respectively. We also investigated the image recording and reconstruction performance for both traditional and polarization holography and the results indicate that the proposed material has noticeable potential as a holographic storage material. Additionally, it also possesses excellent potential for holographic position multiplexing recording. We conclude that laser ablation in a liquid is a promising option for processing low-cost nano-doped holographic storage material.

12.
Angew Chem Int Ed Engl ; 58(10): 3102-3107, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30474308

RESUMO

Hydrogen uptake and release in arene-cycloalkane pairs provide an attractive opportunity for on-board and off-board hydrogen storage. However, the efficiency of arene-cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. It is shown here that the thermodynamics can be optimized by replacement of H in the -OH group of cyclohexanol and phenol with alkali or alkaline earth metals. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO-LUMO energy gap and elongation of the C-H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. The experimental results demonstrate that sodium phenoxide-cyclohexanolate, an air- and water-stable pair, can desorb hydrogen at ca. 413 K and 373 K in the solid form and in an aqueous solution, respectively. Hydrogenation, on the other hand, is accomplished at temperatures as low as 303 K.

13.
Opt Express ; 26(14): 17794-17803, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114064

RESUMO

Increasing photosensitizer concentration has been considered as an effective approach to improve the performance of holographic material. In this paper, we report on new method for increasing the saturated dissolvability of photosensitizer PQ within polymeric media by introducing copolymerization monomer into the PQ/PMMA. The photosensitizer concentration of PQ was increased from 0.7wt% to 1.3wt%, compared with the typical PQ/PMMA sample. Besides, we investigated performance of polarization holographic recordings in typical PQ/PMMA and copolymerization monomer-containing PQ/PMMA with the orthogonally polarized signal and reference waves. And the doping of THFMA component resulted in a significant improvement of diffraction intensity and photosensitivity. In addition, high-quality holographic image reconstruction was realized in our home-made material.

14.
J Chem Phys ; 149(18): 184101, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441917

RESUMO

Previously, we have proposed a method, FPA-M, for focal-point analysis of magnetic parameter calculations [Sun et al., J. Chem. Phys. 138, 124113 (2013)], where the shielding constants at equilibrium geometries σe are calculated with the second order Møller-Plesset perturbation (MP2) approach, which are extrapolated to the complete basis set (CBS) limit and then augmented by the [σe(CCSD(T)) - σe(MP2)] difference at a valence triple-ζ (VTZ) basis set, where CCSD(T) stands for the coupled cluster singles and doubles model with a perturbative correction for triple excitations. This FPA-M(MP2) method provides satisfactory results to approach to the corresponding CCSD(T)/CBS values for elements of the first two rows in the periodic tables. A series of extensions have been explored here, which replace the MP2/CBS with the Hartree-Fock (HF)/CBS for efficiency. In particular, the [σe(CCSD(T)) - σe(MP2)] VTZ difference is replaced by a step-wise correction from the [σe(CCSD(T)) - σe(MP2)] difference at a valence double-ζ basis set plus the [σe(MP2) - σe(HF)] VTZ difference, leading to a new scheme, denoted here as FPA-M(HF'). A systematical comparison has demonstrated that the FPA-M(HF') method provides an excellent balance between accuracy and efficiency, which makes routinely accurate calculations of the shielding constants for medium-sized organic molecules and biomolecules feasible.

15.
Opt Lett ; 42(7): 1377-1380, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362773

RESUMO

We report on dual-channel recording within polarization holography written by orthogonal linear polarization waves. The null reconstruction effect (NRE) of linear polarization holography was experimentally achieved at a large cross-angle of π/2 inside the polarization-sensitive media. Based on the NRE, two polarization encoded holograms were recorded in a dual-channel recording system with negligible inter-channel crosstalk. The two polarization multiplexed holograms could then be sequentially or simultaneously readout by shifting the polarization state of reference wave with the best signal-to-noise of 18:1 obtained within the experiment.

16.
Opt Express ; 23(7): 8880-7, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968725

RESUMO

We report on the null reconstruction of polarization volume hologram recorded by orthogonal circularly polarized waves with a large cross angle. Based on the recently developed tensor theory for polarization holography, the disappearance of the reconstruction was analytically verified, where a nice agreement was found between the experimental and theoretical results. When the polarization and intensity hologram attain a balance, not only the null reconstruction but also the faithful reconstruction can be realized by the illumination of the orthogonal reference wave and original reference wave. As a consequence of the hologram recorded without paraxial approximation, the null reconstruction may lead to important applications, such as a potential enhancement in optical storage capacity for volume holograms.

17.
Phys Chem Chem Phys ; 17(26): 17266-70, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26073642

RESUMO

The rotational spectrum of trifluoroacetonitrile-water complex has been studied by pulsed-nozzle, Fourier transform microwave spectroscopy. Both a-type and b-type transitions have been observed. The rotational constants, centrifugal distortion constants, and the (14)N nuclear quadrupole coupling constants have been determined. The complex is T-shaped, with the oxygen atom from the water located 3.135 Å from the carbon atom of CF3 of the trifluoroacetonitrile molecule.

18.
J Nat Prod ; 78(10): 2405-10, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26378981

RESUMO

Aspertetranones A-D (1-4), four new highly oxygenated putative rearranged triketide-sesquiterpenoid meroterpenes, were isolated from the marine algal-associated fungus Aspergillus sp. ZL0-1b14. On the basis of a comprehensive spectroscopic analysis, the planar structures of aspertetranones were determined to possess an unusual skeleton in the terpenoid part. The relative and absolute configurations of the aspertetranones were assigned on the basis of NOESY analysis, X-ray crystallography, and circular dichroism spectroscopy. Compounds 1-4 were evaluated for anti-inflammatory activity in LPS-stimulated RAW264.7 macrophages. Aspertetranone D exhibited an inhibitory effect against IL-6 production with 69% inhibition at 40 µM.


Assuntos
Aspergillus/química , Sesquiterpenos/isolamento & purificação , Algoritmos , Animais , Anti-Inflamatórios/farmacologia , China , Cristalografia por Raios X , Interleucina-6/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Biologia Marinha , Camundongos , Conformação Molecular , Estrutura Molecular , Óxido Nítrico/análise , Ressonância Magnética Nuclear Biomolecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia
19.
Angew Chem Int Ed Engl ; 54(10): 2950-4, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25604896

RESUMO

Alkali metals have been widely employed as catalyst promoters; however, the promoting mechanism remains essentially unclear. Li, when in the imide form, is shown to synergize with 3d transition metals or their nitrides TM(N) spreading from Ti to Cu, leading to universal and unprecedentedly high catalytic activities in NH3 decomposition, among which Li2NH-MnN has an activity superior to that of the highly active Ru/carbon nanotube catalyst. The catalysis is fulfilled via the two-step cycle comprising: 1) the reaction of Li2NH and 3d TM(N) to form ternary nitride of LiTMN and H2, and 2) the ammoniation of LiTMN to Li2NH, TM(N) and N2 resulting in the neat reaction of 2 NH3⇌N2+3 H2. Li2NH, as an NH3 transmitting agent, favors the formation of higher N-content intermediate (LiTMN), where Li executes inductive effect to stabilize the TM-N bonding and thus alters the reaction energetics.

20.
J Comput Chem ; 35(6): 467-78, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24375394

RESUMO

In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa