Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genet Med ; 21(8): 1772-1780, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30700791

RESUMO

PURPOSE: Develop an automated exome analysis workflow that can produce a very small number of candidate variants yet still detect different numbers of deleterious variants between probands and unaffected siblings. METHODS: Ninety-seven outbred nuclear families from the Undiagnosed Diseases Program/Network included single probands and the corresponding unaffected sibling(s). Single-nucleotide polymorphism (SNP) chip and exome analyses were performed on all, with proband and unaffected sibling considered independently as the target. The total burden of candidate genetic variants was summed for probands and siblings over all considered disease models. RESULTS: Exome analysis workflow include automated programs for ethnicity-matched genotype calling, salvage pathway for Mendelian inconsistency, compound heterozygous recessive detection, BAM file regional curation, population frequency filtering, pedigree-aware BAM file noise evaluation, and exon deletion filtration. This workflow relied heavily on BAM file analysis. A greater average pathogenic variant number was found compared with unaffected siblings. This was significant (p < 0.05) when using published recommended thresholds, and implies that causal variants are retained in many probands' lists. CONCLUSION: Using Mendelian and non-Mendelian models, this agnostic exome analysis shows a difference between a small group of probands and their unaffected siblings. This workflow produces candidate lists small enough to pursue with laboratory validation.


Assuntos
Variações do Número de Cópias de DNA/genética , Processamento Eletrônico de Dados , Doenças Genéticas Inatas/diagnóstico , Análise de Sequência de DNA , Exoma/genética , Éxons/genética , Feminino , Doenças Genéticas Inatas/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética , Irmãos
2.
Ecol Evol ; 14(1): e10835, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38205374

RESUMO

Increasing studies have shown the importance of intraspecific trait variation (ITV) on ecological processes. However, the patterns and sources of ITV are still unclear, especially in the propagules of coastal vegetation. Here, we measured six hypocotyl traits for 66 genealogies of Kandelia obovata from 26 sites and analyzed how ITV in these traits was distributed across geography and genealogy through variance partitioning. We further constructed mixed models and structural equation models to disentangle the effects of climatic, oceanic, and maternal factors on ITV. Results showed that size-related traits decreased along increasing latitudinal gradients, which was mainly driven by positive regulation of temperature on these traits. By contrast, ITV of shape trait was unstructured along latitudinal gradients and did not show any dependence among environmental variables. These findings indicate that propagule size mainly varied between populations, whereas propagule shape mainly varied between individuals. Our study may provide useful insights into the ITV in propagule from different functional dimensions and on a broad scale, which may facilitate mangrove protection in light of ITV.

3.
Sci Total Environ ; 914: 169899, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184245

RESUMO

The detection and attribution of biodiversity change is of great scientific interest and central to policy effects aimed at meeting biodiversity targets. Yet, how such a diverse climate scenarios influence forest biodiversity and composition dynamics remains unclear, particularly in high diversity systems of subtropical forests. Here we used data collected from the permanent sample plot spanning 26 years in an old-growth subtropical forest. Combining various climatic events (extreme drought, subsequent drought, warming, and windstorm), we analyzed long-term dynamics in multiple metrics: richness, turnover, density, abundance, reordering and stability. We did not observe consistent and directional trends in species richness under various climatic scenarios. Still, drought and windstorm events either reduced species gains or increased species loss, ultimately increased species turnover. Tree density increased significantly over time as a result of rapid increase in smaller individuals due to mortality in larger trees. Climate events caused rapid changes in dominant populations due to a handful of species undergoing strong increases or declines in abundance over time simultaneously. Species abundance composition underwent significant changes, particularly in the presence of drought and windstorm events. High variance ratio and species synchrony weaken community stability under various climate stress. Our study demonstrates that all processes underlying forest community composition changes often occur simultaneously and are equally affected by climate events, necessitating a holistic approach to quantifying community changes. By recognizing the interconnected nature of these processes, future research should accelerate comprehensive understanding and predicting of how forest vegetation responds to global climate change.


Assuntos
Mudança Climática , Florestas , Humanos , Biodiversidade , Árvores , Secas
4.
Front Plant Sci ; 14: 1260707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078072

RESUMO

Climate change leads to novel species interactions and continues to reshuffle ecological communities, which significantly declines carbon accumulation rates in mature forests. Still, little is known about the potential influence of multiple global change factors on long-term biomass dynamics and functional trait combinations. We used temporal demographic records spanning 26 years and extensive databases of functional traits to assess how old-growth subtropical forest biomass dynamics respond to various climatic change scenarios (extreme drought, subsequent drought, warming, elevated CO2 concentrations, and windstorm). We found that the initial severe drought, subsequent drought and windstorm events increased biomass loss due to tree mortality, which exceeded the biomass gain produced by survivors and recruits, ultimately resulting in more negative net biomass balances. These drought and windstorm events caused massive biomass loss due to tree mortality that tended towards acquisition species with high hydraulic efficiency, whereas biomass growth from survivors and recruits tended to consist of acquisition species with high hydraulic safety. Compensatory growth in this natural forest provided good explanation for the increase in biomass growth after drought and windstorm events. Notably, these dominant-species transitions reduced carbon storage and residence time, forming a positive carbon-climate feedback loop. Our findings suggest that climate changes could alter functional strategies and cause shifts in new dominant species, which could greatly reduce ecological functions and carbon gains of old-growth subtropical forests.

5.
Chirality ; 24(1): 60-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22012845

RESUMO

The best reaction condition of Candida antartica lipase B as biocatalyst, 3-(2-pyridyl)pyrazole as leaving azole, and water-saturated methyl t-butyl ether as reaction medium at 45°C were first selected for performing the hydrolytic resolution of (R,S)-2-(4-chlorophenoxyl) azolides (1-4). In comparison with the kinetic resolution of (R,S)-2-phenylpropionyl 3-(2-pyridyl)pyrazolide or (R,S)-α-methoxyphenylacetyl 3-(2-pyridyl)pyrazolide at the same reaction condition, excellent enantioselectivity with more than two order-of-magnitudes higher activity for each enantiomer was obtained. The resolution was then extended to other (R,S)-3-(2-pyridyl)pyrazolides (5-7) containing 2-chloro, 3-chloro, or 2,4-dichloro substituent, giving good (E > 48) to excellent (E > 100) enantioselectivity. The thermodynamic analysis for 1, 2, and 4-7 demonstrates profound effects of the acyl or leaving moiety on varying enthalpic and entropic contributions to the difference of Gibbs free energies. A thorough kinetic analysis further indicates that on the basis of 6, the excellent enantiomeric ratio for 4 and 7 is due to the higher reactivity of (S)-4 and lower reactivity of (R)-7, respectively.


Assuntos
Lipase/química , Pirazóis/química , Catálise , Cromatografia Líquida de Alta Pressão , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Solventes , Especificidade por Substrato , Termodinâmica
6.
Bioprocess Biosyst Eng ; 35(6): 953-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22249784

RESUMO

A new approach to the lipase-catalyzed hydrolytic resolution of (R,S)-azolyl carbamates for obtaining chiral azolyl carbamates and alcohol is described. With (R,S)-1-phenylethyl azolyl carbamates as the model substrates, the best reaction condition of using (R,S)-1-phenylethyl 4-bromopyrazole carbamate (1) as the substrate in water-saturated diisopropyl ether at 45 °C is selected. The kinetic constants, and hence enantiomeric ratio of 124, are then estimated from the kinetic analysis by considering the alcohol inhibition effect, with which theoretical time-course conversions for both enantiomers are numerically solved and agree with the experimental data. The thermodynamic parameters -ΔΔH and -ΔΔS satisfying a linear enthalpy-entropy compensation relationship of -ΔΔS = -38.84 + 3.29(-ΔΔH) are further estimated. An extension of the resolution platform to (R,S)-4-bromopyrazole carbamates derived from other (R,S)-alcohols (4, 5, 7) is also addressed.


Assuntos
Carbamatos/química , Álcoois Graxos/química , Lipase/química , Modelos Químicos , Enzimas Imobilizadas , Proteínas Fúngicas , Cinética , Especificidade por Substrato , Termodinâmica
7.
Sci Rep ; 11(1): 5357, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686087

RESUMO

Phosphorus (P) is an important element in terrestrial ecosystems and plays a critical role in soil quality and ecosystem productivity. Soil total P distributions have undergone large spatial changes as a result of centuries of climate change. It is necessary to study the characteristics of the horizontal and vertical distributions of soil total P and its influencing factors. In particular, the influence of climatic factors on the spatial distribution of soil total P in China's forest ecosystems remain relatively unknown. Here, we conducted an intensive field investigation in different forest ecosystems in China to assess the effect of climatic factors on soil total P concentration and distribution. The results showed that soil total P concentration significantly decreased with increasing soil depth. The spatial distribution of soil total P increased with increasing latitude and elevation gradient but decreased with increasing longitude gradient. Random forest models and linear regression analyses showed that the explanation rate of bioclimatic factors and their relationship with soil total P concentration gradually decreased with increasing soil depths. Variance partitioning analysis demonstrated that the most important factor affecting soil total P distribution was the combined effect of temperature and precipitation factor, and the single effect of temperature factors had a higher explanation rate compare with the single effect of precipitation factors. This work provides a new farmework for the geographic distribution pattern of soil total P and the impact of climate variability on P distribution in forest ecosystems.

8.
Lancet Microbe ; 1(6): e254-e262, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33103132

RESUMO

BACKGROUND: During the 2009 pandemic of an emerging influenza A virus (IAV; H1N1pdm09), data from several European countries indicated that the spread of the virus might have been interrupted by the annual autumn rhinovirus epidemic. We aimed to investigate viral interference between rhinovirus and IAV with use of clinical data and an experimental model. METHODS: We did a clinical data analysis and experimental infection study to investigate the co-occurrence of rhinovirus and IAV in respiratory specimens from adults (≥21 years) tested with a multiplex PCR panel at Yale-New Haven Hospital (CT, USA) over three consecutive winter seasons (Nov 1 to March 1, 2016-17, 2017-18, and 2018-19). We compared observed versus expected co-detections using data extracted from the Epic Systems electronic medical record system. To assess how rhinovirus infection affects subsequent IAV infection, we inoculated differentiated primary human airway epithelial cultures with rhinovirus (HRV-01A; multiplicity of infection [MOI] 0·1) or did mock infection. On day 3 post-infection, we inoculated the same cultures with IAV (H1N1 green fluorescent protein [GFP] reporter virus or H1N1pdm09; MOI 0·1). We used reverse transcription quantitative PCR or microscopy to quantify host cell mRNAs for interferon-stimulated genes (ISGs) on day 3 after rhinovirus or mock infection and IAV RNA on days 4, 5, or 6 after rhinovirus or mock infection. We also did sequential infection studies in the presence of BX795 (6 µM), to inhibit the interferon response. We compared ISG expression and IAV RNA and expression of GFP by IAV reporter virus. FINDINGS: Between July 1, 2016, and June 30, 2019, examination of 8284 respiratory samples positive for either rhinovirus (n=3821) or IAV (n=4463) by any test method was used to establish Nov 1 to March 1 as the period of peak virus co-circulation. After filtering for samples within this time frame meeting the inclusion criteria (n=13 707), there were 989 (7·2%) rhinovirus and 922 (6·7%) IAV detections, with a significantly lower than expected odds of co-detection (odds ratio 0·16, 95% CI 0·09-0·28). Rhinovirus infection of cell cultures induced ISG expression and protected against IAV infection 3 days later, resulting in an approximate 50 000-fold decrease in IAV H1N1pdm09 viral RNA on day 5 post-rhinovirus inoculation. Blocking the interferon response restored IAV replication following rhinovirus infection. INTERPRETATION: These findings show that one respiratory virus can block infection with another through stimulation of antiviral defences in the airway mucosa, supporting the idea that interference from rhinovirus disrupted the 2009 IAV pandemic in Europe. These results indicate that viral interference can potentially affect the course of an epidemic, and this possibility should be considered when designing interventions for seasonal influenza epidemics and the ongoing COVID-19 pandemic. FUNDING: National Institutes of Health, National Institute of General Medical Sciences, and the Yale Department of Laboratory Medicine.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Análise de Dados , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Interferons/metabolismo , Pandemias , RNA Viral/genética , Rhinovirus/metabolismo , Estados Unidos
9.
mSystems ; 5(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606031

RESUMO

Culture and screening of gut bacteria enable testing of microbial function and therapeutic potential. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for separating and assaying growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We then used MicDrop to test whether individuals possess similar abundances of carbohydrate-degrading gut bacteria, using an approach which had previously not been possible due to throughput limitations of traditional bacterial culture techniques. Single MicDrop experiments allowed us to characterize carbohydrate utilization among dozens of gut bacterial taxa from distinct human stool samples. Our aggregate data across nine healthy stool donors revealed that all of the individuals harbored gut bacterial species capable of degrading common dietary polysaccharides. However, the levels of richness and abundance of polysaccharide-degrading species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and 24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial taxa may be broadly categorized by whether they can grow on single or multiple polysaccharides, and we found that this lifestyle trait is correlated with how broadly bacterial taxa can be found across individuals. This demonstration shows that it is feasible to measure the function of hundreds of bacterial taxa across multiple fecal samples from different people, which should in turn enable future efforts to design microbiota-directed therapies and yield new insights into microbiota ecology and evolution.IMPORTANCE Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs.

10.
Ecol Evol ; 9(9): 5338-5347, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31110683

RESUMO

To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state-owned forest farm, two 1-ha permanent study plots (100-m × 100-m) were established. We selected four diversity indices including species richness, Shannon-Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken-stick, niche preemption, and Zipf-Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion (AIC) and Kolmogorov-Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad-leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump-shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad-leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.

11.
Nat Microbiol ; 3(12): 1441-1450, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374168

RESUMO

Resource limitation is a fundamental factor governing the composition and function of ecological communities. However, the role of resource supply in structuring the intestinal microbiome has not been established and represents a challenge for mammals that rely on microbial symbionts for digestion: too little supply might starve the microbiome while too much might starve the host. We present evidence that microbiota occupy a habitat that is limited in total nitrogen supply within the large intestines of 30 mammal species. Lowering dietary protein levels in mice reduced their faecal concentrations of bacteria. A gradient of stoichiometry along the length of the gut was consistent with the hypothesis that intestinal nitrogen limitation results from host absorption of dietary nutrients. Nitrogen availability is also likely to be shaped by host-microbe interactions: levels of host-secreted nitrogen were altered in germ-free mice and when bacterial loads were reduced via experimental antibiotic treatment. Single-cell spectrometry revealed that members of the phylum Bacteroidetes consumed nitrogen in the large intestine more readily than other commensal taxa did. Our findings support a model where nitrogen limitation arises from preferential host use of dietary nutrients. We speculate that this resource limitation could enable hosts to regulate microbial communities in the large intestine. Commensal microbiota may have adapted to nitrogen-limited settings, suggesting one reason why excess dietary protein has been associated with degraded gut-microbial ecosystems.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Mamíferos/microbiologia , Nitrogênio/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/metabolismo , Dieta , Proteínas Alimentares , Fezes/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Camundongos , RNA Ribossômico 16S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa