Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Biol ; 2: 177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098410

RESUMO

Recent advances in super-resolution microscopy allow the localization of single molecules within individual cells but not within multiple whole cells due to weak signals from single molecules and slow acquisition process for point accumulation to reconstruct super-resolution images. Here, we report a fast, large-scale, and three-dimensional super-resolution fluorescence microscope based on single-wavelength Bessel lightsheet to selectively illuminate spontaneous blinking fluorophores tagged to the proteins of interest in space. Critical parameters such as labeling density, excitation power, and exposure time were systematically optimized resulting in a maximum imaging speed of 2.7 × 104 µm3 s-1. Fourier ring correlation analysis revealed a reconstructed image with a lateral resolution of ~75 nm through the accumulation of 250 image volumes on immobilized samples within 15 min. Hence, the designed system could open new insights into the discovery of complex biological structures and live 3D localization imaging.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Células 3T3 , Animais , Células Cultivadas , Corantes Fluorescentes , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ratos
2.
Appl Spectrosc ; 72(8): 1137-1169, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29926744

RESUMO

The introduction of light sheet fluorescence microscopy (LSFM) has overcome the challenges in conventional optical microscopy. Among the recent breakthroughs in fluorescence microscopy, LSFM had been proven to provide a high three-dimensional spatial resolution, high signal-to-noise ratio, fast imaging acquisition rate, and minuscule levels of phototoxic and photodamage effects. The aforementioned auspicious properties are crucial in the biomedical and clinical research fields, covering a broad range of applications: from the super-resolution imaging of intracellular dynamics in a single cell to the high spatiotemporal resolution imaging of developmental dynamics in an entirely large organism. In this review, we provided a systematic outline of the historical development of LSFM, detailed discussion on the variants and improvements of LSFM, and delineation on the most recent technological advancements of LSFM and its potential applications in single molecule/particle detection, single-molecule super-resolution imaging, imaging intracellular dynamics of a single cell, multicellular imaging: cell-cell and cell-matrix interactions, plant developmental biology, and brain imaging and developmental biology.


Assuntos
Técnicas Citológicas , Microscopia de Fluorescência , Animais , Células Cultivadas , Humanos , Camundongos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa