Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102186, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753348

RESUMO

The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 µM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Compostos de Sulfidrila , Cinética , Mutação , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Rev Cardiovasc Med ; 24(12): 349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39077070

RESUMO

Background: The relationship between novel anthropometric indices, specifically a body shape index (ABSI) and body roundness index (BRI), with abdominal aortic calcification (AAC) or severe AAC (SAAC) is unclear. The aim of our study was therefore to investigate possible relationships between novel anthropometric indices and prevalence of AAC and SAAC. Methods: We obtained U.S. general population data from the National Health and Nutrition Examination Survey between 2013 and 2014. The study used restricted cubic spline (RCS) analysis, multivariable logistic regression modeling, subgroup analysis, and receiver operating characteristic (ROC) curve assessment. We investigated relationships between ABSI or BRI and AAC and SAAC risk. Associations between ABSI or BRI and the degree of AAC were also evaluated using a generalized additive model. Results: The study cohort was comprised of 1062 individuals. The RCS plots revealed a U-shaped curve associating ABSI with AAC risk. A similar trend emerged for SAAC, where the risk initially increased before subsequently decreasing with rising ABSI levels. Additionally, BRI exhibited a positive correlation with both AAC and SAAC risk. As ABSI and BRI values increased, the degree of AAC also increased. In ROC analysis, ABSI displayed a significantly larger area under the curve compared to BRI. Conclusions: ABSI is associated with AAC prevalence following a U-shaped curve. Additionally, BRI is positively correlated with AAC risk. ABSI demonstrates a superior discriminative ability for AAC compared to BRI. Therefore, maintaining an appropriate ABSI and BRI may reduce the prevalence of AAC.

3.
Mol Cell Proteomics ; 20: 100073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757833

RESUMO

Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, but the molecular mechanisms underlying their activity remain elusive. In this study we profiled proteomics and redox proteomics changes induced by AgNPs in two lung cancer cell lines: AgNPs-sensitive Calu-1 and AgNPs-resistant NCI-H358. We show that AgNPs induce changes in protein abundance and reversible oxidation in a time and cell-line-dependent manner impacting critical cellular processes such as protein translation and modification, lipid metabolism, bioenergetics, and mitochondrial dynamics. Supporting confocal microscopy and transmission electron microscopy (TEM) data further emphasize mitochondria as a target of AgNPs toxicity differentially impacting mitochondrial networks and morphology in Calu-1 and NCI-H358 lung cells. Proteomics data are available via ProteomeXchange with identifier PXD021493.


Assuntos
Neoplasias Pulmonares/metabolismo , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Oxirredução , Proteômica
4.
J Biol Chem ; 297(1): 100883, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34144039

RESUMO

Abl family kinases are nonreceptor tyrosine kinases activated by diverse cellular stimuli that regulate cytoskeleton organization, morphogenesis, and adhesion. The catalytic activity of Abl family kinases is tightly regulated in cells by a complex set of intramolecular and intermolecular interactions and post-translational modifications. For example, the platelet-derived growth factor receptor beta (PDGFRß), important for cell proliferation and chemotaxis, is a potent activator of Abl family kinases. However, the molecular mechanism by which PDGFRß engages and activates Abl family kinases is not known. We show here that the Abl2 Src homology 2 domain directly binds to phosphotyrosine Y771 in the PDGFRß cytoplasmic domain. PDGFRß directly phosphorylates multiple novel sites on the N-terminal half of Abl2, including Y116, Y139, and Y161 within the Src homology 3 domain, and Y299, Y303, and Y310 on the kinase domain. Y116, Y161, Y272, and Y310 are all located at or near the Src homology 3/Src homology 2-kinase linker interface, which helps maintain Abl family kinases in an autoinhibited conformation. We also found that PDGFRß-mediated phosphorylation of Abl2 in vitro activates Abl2 kinase activity, but mutation of these four tyrosines (Y116, Y161, Y272, and Y310) to phenylalanine abrogated PDGFRß-mediated activation of Abl2. These findings reveal how PDGFRß engages and phosphorylates Abl2 leading to activation of the kinase, providing a framework to understand how growth factor receptors engage and activate Abl family kinases.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Células 3T3 , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
5.
J Neurochem ; 160(5): 524-539, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932218

RESUMO

It is imperative to develop novel therapeutic strategies for Alzheimer's disease (AD) and related dementia syndromes based on solid mechanistic studies. Maintenance of memory and synaptic plasticity relies on de novo protein synthesis, which is partially regulated by phosphorylation of eukaryotic elongation factor 2 (eEF2) via its kinase eEF2K. Abnormally increased eEF2 phosphorylation and impaired mRNA translation have been linked to AD. We recently reported that prenatal genetic suppression of eEF2K is able to prevent aging-related cognitive deficits in AD model mice, suggesting the therapeutic potential of targeting eEF2K/eEF2 signaling in AD. Here, we tested two structurally distinct small-molecule eEF2K inhibitors in two different lines of AD model mice after the onset of cognitive impairments. Our data revealed that treatment with eEF2K inhibitors improved AD-associated synaptic plasticity impairments and cognitive dysfunction, without altering brain amyloid ß (Aß) and tau pathology. Furthermore, eEF2K inhibition alleviated AD-associated defects in dendritic spine morphology, post-synaptic density formation, protein synthesis, and dendritic polyribosome assembly. Our results may offer critical therapeutic implications for AD, and the proof-of-principle study indicates translational implication of inhibiting eEF2K for AD and related dementia syndromes. Cover Image for this issue: https://doi.org/10.1111/jnc.15392.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Camundongos , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Síndrome
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1149-1152, 2022 Oct 10.
Artigo em Zh | MEDLINE | ID: mdl-36184102

RESUMO

OBJECTIVE: To explore the genetic etiology of a child featuring global developmental and mental retardation. METHODS: Chromosome G-banding karyotype analysis, copy number variation sequencing (CNV-seq) and high-resolution chromosome banding were used to screen the genomic variant in the child and his parents. RESULTS: Both the child and his father were found to have a karyotype of 46,XY,del(18)(q21.1q21.3), whilst his mother was 46,XX. CNV-seq analysis showed that the child was arr[19]18q21.2-q21.32(chr18:48 422 190-58 039 582)×1, with a 10.58 Mb deletion which encompassed the TCF4 gene. The same deletion was found in neither parent. High-resolution banding revealed that the father has a fragment of 18q21.1q21.3 inserted into 5p13.1. CONCLUSION: The child was diagnosed with Pitt-Hopkins syndrome due to the 18q21.2q21.32 deletion. Chromosome karyotyping and CNV-seq can effectively identify submicroscopic chromosome anomalies.


Assuntos
Deficiência Intelectual , Criança , Bandeamento Cromossômico , Deleção Cromossômica , Variações do Número de Cópias de DNA , Fácies , Humanos , Hiperventilação , Deficiência Intelectual/genética
7.
J Biol Chem ; 293(42): 16376-16389, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30190325

RESUMO

Reactive oxygen species (ROS), in particular H2O2, regulate intracellular signaling through reversible oxidation of reactive protein thiols present in a number of kinases and phosphatases. H2O2 has been shown to regulate mitogen-activated protein kinase (MAPK) signaling depending on the cellular context. We report here that in human articular chondrocytes, the MAPK family member c-Jun N-terminal kinase 2 (JNK2) is activated by fibronectin fragments and low physiological levels of H2O2 and inhibited by oxidation due to elevated levels of H2O2 The kinase activity of affinity-purified, phosphorylated JNK2 from cultured chondrocytes was reversibly inhibited by 5-20 µm H2O2 Using dimedone-based chemical probes that react specifically with sulfenylated cysteines (RSOH), we identified Cys-222 in JNK2, a residue not conserved in JNK1 or JNK3, as a redox-reactive site. MS analysis of human recombinant JNK2 also detected further oxidation at Cys-222 and other cysteines to sulfinic (RSO2H) or sulfonic (RSO3H) acid. H2O2 treatment of JNK2 resulted in detectable levels of peptides containing intramolecular disulfides between Cys-222 and either Cys-213 or Cys-177, without evidence of dimer formation. Substitution of Cys-222 to alanine rendered JNK2 insensitive to H2O2 inhibition, unlike C177A and C213A variants. Two other JNK2 variants, C116A and C163A, were also resistant to oxidative inhibition. Cumulatively, these findings indicate differential regulation of JNK2 signaling dependent on H2O2 levels and point to key cysteine residues regulating JNK2 activity. As levels of intracellular H2O2 rise, a switch occurs from activation to inhibition of JNK2 activity, linking JNK2 regulation to the redox status of the cell.


Assuntos
Condrócitos/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Células Cultivadas , Fibronectinas , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Chem Res Toxicol ; 32(3): 526-534, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30784263

RESUMO

Redox-mediated protein modifications control numerous processes in both normal and disease metabolism. Protein sulfenic acids, formed from the oxidation of protein cysteine residues, play a critical role in thiol-based redox signaling. The reactivity of protein sulfenic acids requires their identification through chemical trapping, and this paper describes the use of the triphenylphosphonium (TPP) ion to direct known sulfenic acid traps to the mitochondria, a verified source of cellular reactive oxygen species. Coupling of the TPP group with the 2,4-(dioxocyclohexyl)propoxy (DCP) unit and the bicyclo[6.1.0]nonyne (BCN) group produces two new probes, DCP-TPP and BCN-TPP. DCP-TPP and BCN-TPP react with C165A AhpC-SOH, a model protein sulfenic acid, to form the expected adducts with second-order rate constants of k = 1.1 M-1 s-1 and k = 5.99 M-1 s-1, respectively, as determined by electrospray ionization time-of-flight mass spectrometry. The TPP group does not alter the rate of DCP-TPP reaction with protein sulfenic acid compared to dimedone but slows the rate of BCN-TPP reaction compared to a non-TPP-containing BCN-OH control by 4.6-fold. The hydrophobic TPP group may interact with the protein, preventing an optimal reaction orientation for BCN-TPP. Unlike BCN-OH, BCN-TPP does not react with the protein persulfide, C165A AhpC-SSH. Extracellular flux measurements using A549 cells show that DCP-TPP and BCN-TPP influence mitochondrial energetics, with BCN-TPP producing a drastic decrease in basal respiration, perhaps due to its faster reaction kinetics with sulfenylated proteins. Further control experiments with BCN-OH, TPP-COOH, and dimedone provide strong evidence for mitochondrial localization and accumulation of DCP-TPP and BCN-TPP. These results reveal the compatibility of the TPP group with reactive sulfenic acid probes as a mitochondrial director and support the use of the TPP group in the design of sulfenic acid traps.


Assuntos
Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/síntese química , Compostos Organofosforados/farmacologia , Proteínas/química , Ácidos Sulfênicos/análise , Células A549 , Humanos , Mitocôndrias/metabolismo , Sondas Moleculares/química , Estrutura Molecular , Compostos Organofosforados/química
9.
Adv Exp Med Biol ; 1140: 327-358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347057

RESUMO

Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.


Assuntos
Espectrometria de Massas , Oxirredução , Estresse Oxidativo , Medicina de Precisão , Antioxidantes , Humanos , Oxidantes
10.
Rapid Commun Mass Spectrom ; 32(16): 1372-1378, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29857349

RESUMO

RATIONALE: Influenza A viruses (IAVs) are still a threat to human health and life. The process of virus infection involves a series of biological regulations, such as signal transduction, that may be closely linked with the function of glycoproteins. However, the number and level of glycoproteins is low compared with other proteins in the whole protein pool. METHODS: Viruses obtained from chicken embryos were purified by sucrose gradient centrifugation. PNGase F enzyme was then used to remove the glycan modification, followed by two-dimensional electrophoresis (2DE) to separate the hemagglutinin1 (HA1) glycoprotein. In-gel digestion was used to obtain peptides that were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: Remarkably, we found five isoforms of HA1 with the same molecular weight but different isoelectric points. Furthermore, HA1 treatment with PNGase F enzyme changed all but one protein spot from 2DE, indicating that the different HA1 isoforms in 2DE were a result of different glycosylation modifications. CONCLUSIONS: The difference in isoelectric points of these HA1 isoforms was caused by glycan modification. This method provides a new approach for the study of glycosylation of the proteome for viruses or any other organisms.


Assuntos
Hemaglutininas/análise , Hemaglutininas/química , Vírus da Influenza A Subtipo H1N1/química , Animais , Embrião de Galinha , Glicoproteínas/análise , Glicoproteínas/química , Humanos , Influenza Humana/virologia , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Rapid Commun Mass Spectrom ; 28(7): 741-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24573805

RESUMO

RATIONALE: The pathology of A/Puerto Rico/8/1934 (H1N1) infection associated with the interaction of virus and its host cells is not clear. N-Acetylcysteine (NAC) is an antioxidant as well as a premier antitoxin and immune support substance. A high dose of NAC was recently reported for a therapy of H1N1 (2009) influenza pneumonia. METHODS: NAC was used as a small-molecule organic probe to investigate the protein expression of human lung carcinoma cell line (A549) infected by influenza virus A/Puerto Rico/8/1934 (H1N1). Differential proteins were identified from MALDI-TOF MS and Q-TOF MS/MS analyses. RESULTS: The obtained results showed that NAC kept cells away from apoptosis. Virus-infected cells were arrested in G0/G1 phase. The lowest cell population of G0/G1 phase was detected when the cells were treated by 10 mM NAC for one day. Application of MS-based proteomics allowed the identification of the differential proteins. Software analysis showed that four proteins had close relationship. CONCLUSIONS: The results indicated that NAC as a small-molecule probe might effect the protein expression of A549 cells infected by the H1N1 virus.


Assuntos
Acetilcisteína/farmacologia , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/metabolismo , Proteoma , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Humanos , Dados de Sequência Molecular , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Proteoma/análise , Proteoma/química , Proteoma/efeitos dos fármacos
12.
Phytochem Anal ; 25(2): 97-105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605365

RESUMO

INTRODUCTION: Pogostone possesses potent anti-bacterial and anti-fungal activities and has been used for the quality control of essential oil of Pogostemon cablin. Pogostone is easily absorbed after oral administration but its metabolism in mammals remains elusive. OBJECTIVE: To investigate the metabolic profile of pogostone in vitro and in vivo. METHODS: High-performance liquid chromatography coupled with mass spectrometry (LC­MS) techniques were employed. Orbitrap MS and ion trap tandem mass spectrometry (MS/MS) were utilised to analyse the metabolism of pogostone by virtue of the high sensitivity and high selectivity in the measurement. In vitro experiment was carried out using rat liver microsomes while the in vivo study was conducted on rats, which were orally administered with pogostone (80 mg/kg). RESULTS: In total, three mono-hydroxylated, one di-hydroxylated, one mono-oxygenated, one di-oxygenated metabolite, one hydrolysis and one hydroxy conjugated metabolites were found. In addition hydroxylation was demonstrated to be a major metabolic pathway of pogostone. CONCLUSION: LC­MS was demonstrated to be a powerful tool for the metabolite identification of pogostone. The tentative identification of metabolites provides an insight for the metabolic clues of pogostone.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lamiaceae/química , Óleos Voláteis/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Hidroxilação , Masculino , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/farmacocinética , Oxirredução , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
13.
Sci Total Environ ; 951: 175449, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134278

RESUMO

Enhanced anthropogenic activity strength has altered the watershed particulate transport and material cycle resulting in organic pollutant deposition changes in Dongting Lake associated with unclear ecological risk. In the present study, dual biomarkers i.e. n-alkanes and polycyclic aromatic hydrocarbon (PAHs) were applied in the 210Pb-dated sediment cores for traceability of centennial organic pollutants in the lake mouth area. The partial least squares path model and risk quotients method were used to explore the controlling pathways and ecological risk. The results show a range of sedimentary organic carbon (C), nitrogen (N), and phosphorus (P) was at 1.76-185.66, 0.97-89.80, and 0.01-0.97 g m-2 yr-1 with total reserves of 51.68, 18.44, and 0.27 t ha-1, respectively, over the past 179 years. The presence of PAHs rapidly increased by 2.47 fold from 535.60 ng g-1, while PAHs and carcinogenic PAHs (ΣCPAHs) burial fluxes increased by about 6 and 5 folds, respectively. Accompanied by anthropogenic activities and climate change, the exotic sources gradually becoming predominant. The n-alkane diagnostic ratios indicated a shift of organic matter (OM) from autotrophic bacteria, algae, and phytoplankton-derived sources to macrophyte and terrestrial plants. The exotic origins rose to approximately 73.61 %, while endogenous sources decreased to 26.39 %. The direct effects of anthropogenic activities and their indirect negative impacts on climate and sedimentary structure are the key ways for sediment material loading. The nutrient accumulation in sediments coincides with the lake's eutrophication history over the past decades. The ΣCPAHs accounted for about 89.37 ± 17.14 % of the total TEQ, reflecting a strong ecological risk. The contribution of anthropogenic activities such as fuel usage, fertilizer application, hard pavement coverage, and OM loss from the ecosystem to the sources of organic pollutants and their component types may be a focus of attention in the middle reaches of the Yangtze River plain lake.

14.
J Hazard Mater ; 445: 130474, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36446312

RESUMO

The upper reaches of the Yangtze River have experienced increasing anthropogenic stress. Quantitative tracing of carbon (C) sources and ecological risks through biomarkers i.e., polycyclic aromatic hydrocarbons (PAHs) and n-alkanes is significant for C neutrality and sequestration. Here, source and sink patterns, and factors influencing C burial and biomarker components in a small catchment of Dianchi Lake were explored. The sediment core covered the period 1855-2019. Before 1945, the organic C accumulation rate (OCAR) ranged from 0.71 to 5.12 mg cm-2 yr-1, and the PAHs and n-alkanes fluxes were 106.99-616.09 ng cm-2 yr-1 and 5.56-31.37 µg cm-2 yr-1. During 1945-2005, the OCAR, PAH, and n-alkane burial rapidly increased from 3.19 to 16.17 mg cm-2 yr-1, 230.40 to 2538.81 ng cm-2 yr-1, and 11.63 to 61.90 µg cm-2 yr-1. During 1855-2019, deposition fluxes of PAHs and n-alkanes increased 13.01 and 9.14 times, resulting in increased C burial, driven by environmental changes. A PMF model and the diagnostic ratio indicated that PAHs from coal combustion and traffic emission increased from 22.32% to 65.20% during 1855-2019. The PAH concentrations reflected normal-moderate contamination and potential risks to the aquatic environment. The results facilitate a comprehensive understanding of anthropogenic-driven interactions between increasing OC burial and ecological risks.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Carbono/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Alcanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Lagos , China
15.
J Trace Elem Med Biol ; 79: 127193, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269648

RESUMO

BACKGROUND: The relationship between iron metabolism and variations in blood pressure and hypertension risk is still not clear. This study aimed to determine whether iron metabolism is associated with changes in blood pressure and hypertension prevalence in the general United States population. METHODS: The National Health and Nutrition Examination Survey (NAHNES) database contains data on 116876 Americans from 1999 to 2020 years. Data from the NHANES database were used to examine the relationships between iron metabolism (serum iron [SI], serum ferritin [SF], and soluble transferrin receptor [sTfR]) and changes in blood pressure and hypertension prevalence. Generalized linear models and restricted cubic spline (RCS) plot curves were used to estimate the relationship between iron metabolism and hypertension. Further, generalized additive models with smooth functions were used to identify the relationship between iron metabolism and blood pressure. Finally, a stratified subgroup analysis was performed. RESULTS: A total of 6710 participants were included in our analysis. The RCS plot showed a linear relationship between SI, as well as sTfR, and hypertension prevalence. SF and hypertension prevalence were associated in a J-shape. In addition, the relationship between SI and systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreased initially and then increased. A correlation between SF, SBP, and DBP first decreased, then increased, and finally decreased. A positive linear correlation existed between sTfR and SBP, but it increased and then decreased with DBP. CONCLUSION: The correlation between SF and hypertension prevalence displayed a J-curve. In contrast, the correlation between SI, as well as sTfR, and hypertension risk was negative and positive, respectively.


Assuntos
Ferritinas , Hipertensão , Humanos , Estados Unidos , Pressão Sanguínea/fisiologia , Inquéritos Nutricionais , Estudos Transversais , Hipertensão/epidemiologia , Receptores da Transferrina , Ferro
16.
Nat Commun ; 14(1): 2123, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055412

RESUMO

Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Metabolismo Energético , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
17.
Anal Chem ; 84(23): 10236-44, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23134482

RESUMO

In this paper, we describe the development of a novel stable isotope N-phosphorylation labeling (SIPL) strategy for peptide de novo sequencing and protein quantification based on organic phosphorus chemistry. The labeling reaction could be performed easily and completed within 40 min in a one-pot reaction without additional cleanup procedures. It was found that N-phosphorylation labeling reagents were activated in situ to form labeling intermediates with high reactivity targeting on N-terminus and ε-amino groups of lysine under mild reaction conditions. The introduction of N-terminal-labeled phosphoryl group not only improved the ionization efficiency of peptides and increased the protein sequence coverage for peptide mass fingerprints but also greatly enhanced the intensities of b ions, suppressed the internal fragments, and reduced the complexity of the tandem mass spectrometry (MS/MS) fragmentation patterns of peptides. By using nano liquid chromatography chip/time-of-flight mass spectrometry (nano LC-chip/TOF MS) for the protein quantification, the obtained results showed excellent correlation of the measured ratios to theoretical ratios with relative errors ranging from 0.5% to 6.7% and relative standard deviation of less than 10.6%, indicating that the developed method was reproducible and precise. The isotope effect was negligible because of the deuterium atoms were placed adjacent to the neutral phosphoryl group with high electrophilicity and moderately small size. Moreover, the SIPL approach used inexpensive reagents and was amenable to samples from various sources, including cell culture, biological fluids, and tissues. The method development based on organic phosphorus chemistry offered a new approach for quantitative proteomics by using novel stable isotope labeling reagents.


Assuntos
Química Orgânica , Marcação por Isótopo , Fragmentos de Peptídeos/análise , Fósforo/química , Proteínas/análise , Animais , Bovinos , Cromatografia Líquida , Humanos , Nanotecnologia , Fosforilação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/metabolismo
18.
Medicine (Baltimore) ; 101(49): e31964, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626466

RESUMO

BACKGROUND: The aim of this study is to investigate a new mechanism that may affect spontaneous abortions (SA): Can long interspersed nuclear element-1 (LINE-1) insertions in embryo cells lead to early SA? METHODS: The method involves prospective study on new mechanism of human early SA. Twenty SA tissues and 10 induced abortion (IA) tissues were utilized for this experiment. Western Blot, Immunohistochemistry (IHC), and reverse transcription-polymerase chain reaction were used to analyze different LINE-1 proteins and mRNA expression between early SA tissues and early IA tissues. SPSS software version 21.0 was used for statistical analysis. RESULTS: Western Blot demonstrated that the LINE-1 protein expression in SA tissues (Mean: 60.2%) is higher than in IA tissues (Mean: 30.3%) in 91% of the compared samples. reverse transcription-polymerase chain reaction showed that LINE-1 mRNA expression in SA tissues (Mean: 64.2%) is higher than in IA tissues (Mean: 29.2%) in 6 primer pairs in 89% of the compared samples. IHC showed that the LINE-1 protein expression in SA tissues (Mean: 59.2%) is higher than in IA tissues (Mean: 28.8%) in 83% of the compared samples. CONCLUSIONS: Expression of LINE-1 in early SA tissues is higher than in IA tissues, LINE-1 may lead to early SA and LINE-1 plays a role in early SA, this shows that a new mechanism may be involved in SA.


Assuntos
Aborto Induzido , Aborto Espontâneo , Gravidez , Feminino , Humanos , Aborto Espontâneo/genética , Retroelementos/genética , Estudos Prospectivos , RNA Mensageiro/genética
19.
Redox Biol ; 49: 102218, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952463

RESUMO

Redox metabolism plays essential functions in the pathology of cancer and many other diseases. While several radiotracers for imaging redox metabolism have been developed, there are no reports of radiotracers for in vivo imaging of protein oxidation. Here we take the first step towards this goal and describe the synthesis and kinetic properties of a new positron emission tomography (PET) [18F]Fluoro-DCP radiotracer for in vivo imaging of protein sulfenylation. Time course biodistribution and PET/CT studies using xenograft animal models of Head and Neck Squamous Cell Cancer (HNSCC) demonstrate its capability to distinguish between tumors with radiation sensitive and resistant phenotypes consistent with previous reports of decreased protein sulfenylation in clinical specimens of radiation resistant HNSCC. We envision further development of this technology to aid research efforts towards improving diagnosis of patients with radiation resistant tumors.


Assuntos
Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Animais , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
20.
Front Oncol ; 12: 946320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686772

RESUMO

Redox metabolism is increasingly investigated in cancer as driving regulator of tumor progression, response to therapies and long-term patients' quality of life. Well-established cancer therapies, such as radiotherapy, either directly impact redox metabolism or have redox-dependent mechanisms of action defining their clinical efficacy. However, the ability to integrate redox information across signaling and metabolic networks to facilitate discovery and broader investigation of redox-regulated pathways in cancer remains a key unmet need limiting the advancement of new cancer therapies. To overcome this challenge, we developed a new constraint-based computational method (COSMro) and applied it to a Head and Neck Squamous Cell Cancer (HNSCC) model of radiation resistance. This novel integrative approach identified enhanced capacity for H2S production in radiation resistant cells and extracted a key relationship between intracellular redox state and cholesterol metabolism; experimental validation of this relationship highlights the importance of redox state in cellular metabolism and response to radiation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa