Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Proteome Res ; 22(11): 3489-3498, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37856871

RESUMO

Multidrug-resistant Edwardsiella tarda threatens both sustainable aquaculture and human health, but the control measure is still lacking. In this study, we adopted functional proteomics to investigate the molecular mechanism underlying norfloxacin (NOR) resistance in E. tarda. We found that E. tarda had a global proteomic shift upon acquisition of NOR resistance, featured with increased expression of siderophore biosynthesis and Fe3+-hydroxamate transport. Thus, either inhibition of siderophore biosynthesis with salicyl-AMS or treatment with another antibiotic, kitasamycin (Kit), which was uptake through Fe3+-hydroxamate transport, enhanced NOR killing of NOR-resistant E. tarda both in vivo and in vitro. Moreover, the combination of NOR, salicyl-AMS, and Kit had the highest efficacy in promoting the killing effects of NOR than any drug alone. Such synergistic effect not only confirmed in vitro and in vivo bacterial killing assays but also applicable to other clinic E. tarda isolates. Thus, our data suggest a proteomic-based approach to identify potential targets to enhance antibiotic killing and propose an alternative way to control infection of multidrug-resistant E. tarda.


Assuntos
Doenças dos Peixes , Norfloxacino , Humanos , Animais , Norfloxacino/farmacologia , Norfloxacino/metabolismo , Edwardsiella tarda/metabolismo , Proteômica , Sideróforos/metabolismo , Antibacterianos/farmacologia , Doenças dos Peixes/microbiologia
2.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901991

RESUMO

Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.


Assuntos
Exossomos , MicroRNAs , Camundongos , Animais , PPAR gama/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , MicroRNAs/genética , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Exossomos/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo
3.
Appl Energy ; 286: 116354, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33551539

RESUMO

Starting in early 2020, the novel coronavirus disease (COVID-19) severely attached the U.S., causing substantial changes in the operations of bulk power systems and electricity markets. In this paper, we develop a data-driven analysis to substantiate the pandemic's impacts from the perspectives of power system security, electric power generation, electric power demand and electricity prices. Our results suggest that both electric power demand and electricity prices have discernibly dropped during the COVID-19 pandemic. Geographically diverse impacts are observed and quantified, while the bulk power systems and markets in the northeast region are most severely affected. All the data sources, assessment criteria, and analysis codes reported in this paper are available on a GitHub repository.

4.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 291-299, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663169

RESUMO

Moringa oleifera has been considered as a potential functional feed or food, since it contains multiple components beneficial to animal and human. However, little is known about the effects of Moringa oleifera supplementation on productive performances in sows. In the current study, the results showed that dietary Moringa oleifera significantly decreased the farrowing length and the number of stillborn (p < .05), while had an increasing trend in the number of live-born (0.05 < p < .10). Furthermore, 8% Moringa oleifera supplementation significantly elevated protein levels in the colostrum (p < .05); 4% Moringa oleifera lowed serum urea nitrogen of sows after 90 days of gestation (p < .05) and significantly decreased serum glucose on 10 days of lactation (p < .05). Both groups showed significant elevation in serum T-AOC activity (p < .05). The serum malondialdehyde (MDA) of sows declined significantly in 4% Moringa oleifera addition group (p < .05). 8% Moringa oleifera meal significantly elevated serum CAT activity after 60 days of gestation (p < .05), while decreased the serum MDA level and increased the serum GSH-Px activity of sows at 10 days of lactation (p < .05). Of piglets, both two dosages of Moringa oleifera supplementation essentially reduced the serum urea nitrogen (p < .05), and 4% Moringa oleifera meal increased serum total protein (p < .05). In addition, piglets that received 8% Moringa oleifera had the highest serum CAT and SOD activities among all groups (p < .05). The present study indicated that Moringa oleifera supplementation could enhance the reproduction performances, elevate protein levels in the colostrum and improve the serum antioxidant indices in both sows and piglets.


Assuntos
Ração Animal/análise , Dieta/veterinária , Moringa oleifera/química , Suínos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Colostro/química , Suplementos Nutricionais , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Suínos/sangue
5.
Analyst ; 143(10): 2285-2292, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29671851

RESUMO

Billions of people suffer from allergies, though in many cases, the source allergen is unknown. If one knows which allergens to avoid, this would result in an improved quality of life. Since a rapid, high-throughput, automatic allergen detection method is of great need, an integrated system combining microfluidic techniques and microarray chips has been developed herein to automate the allergen detection process. The developed microfluidic system could automatically carry out the entire procedure such as reagent incubation, hybridization, transport, and washing without any intermediate step. The microarray chip could be easily detached from the microfluidic chip afterwards, enabling it to be read under a fluorescence scanner. The experimental results indicated that the developed microfluidic system can automatically perform all the incubation processes, including hybridization, reagent transportation, and washing. It is worth noting that active mixing has been applied in the present study which is different from our previous study using micro-channels for passive incubation. Comparable results to a conventional benchtop approach were obtained in ∼30% less time with ∼25% less samples/reagents. Similar results were also demonstrated while detecting immunoglobulin E samples. The developed system could therefore provide a rapid, reliable, and automated approach for detecting allergen-specific antibodies in human serum.


Assuntos
Hipersensibilidade/diagnóstico , Técnicas Analíticas Microfluídicas , Análise de Sequência com Séries de Oligonucleotídeos , Anticorpos/sangue , Automação Laboratorial , Humanos , Hipersensibilidade/sangue
6.
Int J Antimicrob Agents ; 64(2): 107214, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795933

RESUMO

Potentiation of the effects of currently available antibiotics is urgently required to tackle the rising antibiotics resistance. The pyruvate (P) cycle has been shown to play a critical role in mediating aminoglycoside antibiotic killing, but the mechanism remains unexplored. In this study, we investigated the effects of intermediate metabolites of the P cycle regarding the potentiation of gentamicin. We found that α-ketoglutarate (α-KG) has the best synergy with gentamicin compared to the other metabolites. This synergistic killing effect was more effective with aminoglycosides than other types of antibiotics, and it was effective against various types of bacterial pathogens. Using fish and mouse infection models, we confirmed that the synergistic killing effect occurred in vivo. Furthermore, functional proteomics showed that α-KG downregulated thiosulphate metabolism. Upregulation of thiosulphate metabolism by exogenous thiosulphate counteracted the killing effect of gentamicin. The role of thiosulphate metabolism in antibiotic resistance was further confirmed using thiosulphate reductase knockout mutants. These mutants were more sensitive to gentamicin killing, and less tolerant to antibiotics compared to their parental strain. Thus, our study highlights a strategy for potentiating antibiotic killing by using a metabolite that reduces antibiotic resistance.

7.
Virulence ; 14(1): 2180938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36803528

RESUMO

Streptococcus agalactiae (GBS) is an important pathogenic bacteria that infected both aquatic animals and human beings, causing huge economic loss. The increasing cases of antibiotic-resistant GBS impose challenges to treat such infection by antibiotics. Thus, it is highly demanded for the approach to tackle antibiotic resistance in GBS. In this study, we adopt a metabolomic approach to identify the metabolic signature of ampicillin-resistant GBS (AR-GBS) that ampicillin is the routine choice to treat infection by GBS. We find glycolysis is significantly repressed in AR-GBS, and fructose is the crucial biomarker. Exogenous fructose not only reverses ampicillin resistance in AR-GBS but also in clinic isolates including methicillin-resistant Staphylococcus aureus (MRSA) and NDM-1 expressing Escherichia coli. The synergistic effect is confirmed in a zebrafish infection model. Furthermore, we demonstrate that the potentiation by fructose is dependent on glycolysis that enhances ampicillin uptake and the expression of penicillin-binding proteins, the ampicillin target. Our study demonstrates a novel approach to combat antibiotic resistance in GBS.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estreptocócicas , Animais , Humanos , Antibacterianos , Streptococcus agalactiae , Peixe-Zebra , Infecções Estreptocócicas/microbiologia , Ampicilina , Escherichia coli , Testes de Sensibilidade Microbiana
8.
Front Microbiol ; 14: 1276954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029124

RESUMO

Introduction: Glucose level is related to antibiotic resistance. However, underlying mechanisms are largely unknown. Methods: Since glucose transport is performed by phosphotransferase system (PTS) in bacteria, pts promoter-deleted K12 (Δpts-P) was used as a model to investigate effect of glucose metabolism on antibiotic resistance. Gas chromatography-mass spectrometry based metabolomics was employed to identify a differential metabolome in Δpts-P compared with K12, and with glucose as controls. Results: Δpts-P exhibits the resistance to ß-lactams and aminoglycosides but not to quinolones, tetracyclines, and macrolide antibiotics. Inactivated pyruvate cycle was determined as the most characteristic feature in Δpts-P, which may influence proton motive force (PMF), reactive oxygen species (ROS), and nitric oxide (NO) that are related to antibiotic resistance. Thus, they were regarded as three ways for the following study. Glucose promoted PMF and ß-lactams-, aminoglycosides-, quinolones-mediated killing in K12, which was inhibited by carbonyl cyanide 3-chlorophenylhydrazone. Exogenous glucose did not elevated ROS in K12 and Δpts-P, but the loss of pts promoter reduced ROS by approximately 1/5, which was related to antibiotic resistance. However, NO was neither changed nor related to antibiotic resistance. Discussion: These results reveal that pts promoter regulation confers antibiotic resistance via PMF and ROS in Escherichia coli.

9.
Sci Adv ; 9(10): eade8582, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888710

RESUMO

The mechanism(s) of how bacteria acquire tolerance and then resistance to antibiotics remains poorly understood. Here, we show that glucose abundance decreases progressively as ampicillin-sensitive strains acquire resistance to ampicillin. The mechanism involves that ampicillin initiates this event via targeting pts promoter and pyruvate dehydrogenase (PDH) to promote glucose transport and inhibit glycolysis, respectively. Thus, glucose fluxes into pentose phosphate pathway to generate reactive oxygen species (ROS) causing genetic mutations. Meanwhile, PDH activity is gradually restored due to the competitive binding of accumulated pyruvate and ampicillin, which lowers glucose level, and activates cyclic adenosine monophosphate (cAMP)/cAMP receptor protein (CRP) complex. cAMP/CRP negatively regulates glucose transport and ROS but enhances DNA repair, leading to ampicillin resistance. Glucose and Mn2+ delay the acquisition, providing an effective approach to control the resistance. The same effect is also determined in the intracellular pathogen Edwardsiella tarda. Thus, glucose metabolism represents a promising target to stop/delay the transition of tolerance to resistance.


Assuntos
Ampicilina , Bactérias , Espécies Reativas de Oxigênio/metabolismo , Ampicilina/farmacologia , Bactérias/metabolismo , Glucose/metabolismo , Piruvatos
10.
Front Immunol ; 13: 1010526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389821

RESUMO

Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.


Assuntos
Proteômica , Vibrio alginolyticus , Escherichia coli/metabolismo , Proteínas do Sistema Complemento/metabolismo , Glicina , Manitol/farmacologia , Piruvatos/metabolismo
11.
Nat Sci Sleep ; 14: 323-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250321

RESUMO

OBJECTIVE: We aimed to examine the effects of sleep quality on the association between pre-bedtime electronic screen media use for entertainment and academic performance among college students. We hypothesized that sleep quality mediates the association between pre-bedtime electronic screen media entertainment use and academic performance among college students. METHODS: This was a cross-sectional survey with 1385 participants (age 19.99 ± 1.4 years [range, 17-24 years] and 36.82% males) conducted at Shantou University. The levels of academic performance were based on self-reported academic class ranking from average grades of their last final major examinations. Poor sleep quality was defined as a total score of the Pittsburgh Sleep Quality Index >7. The pre-bedtime prolonged electronic screen media use for entertainment (PESM-E) was defined as the use of electronic screen media for entertainment longer than 60 minutes/night after 10:00 p.m. during the past 6 months. RESULTS: College students with pre-bedtime PESM-E were 1.28-fold more likely to have a poor academic performance than those who used electronic screen media less than 60 minutes (95% confidence interval [CI]: 1.04-1.57, P=0.020). Furthermore, pre-bedtime PESM-E was significantly associated with poor sleep quality (adjusted odds ratio [AOR]=1.87, 95% CI: 1.27-2.74, P=0.001) after controlling for confounders. Mediation model showed that poor sleep quality accounted for 53.08% of the effect of pre-bedtime PESM-E on lower levels of academic performance (Sobel Z=2.04, P=0.041). CONCLUSION: Pre-bedtime PESM-E is associated with poor academic performance in college students, and this association is mediated by poor sleep quality. Our findings highlight the importance of limiting the use of electronic screen media before bedtime in college students.

12.
Redox Biol ; 58: 102512, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306677

RESUMO

Pathogenic strains of bacteria are often highly adept at evading serum-induced cell death, which is an essential complement-mediated component of the innate immune response. This phenomenon, known as serum-resistance, is poorly understood, and as a result, no effective clinical tools are available to restore serum-sensitivity to pathogenic bacteria. Here, we provide evidence that exogenous glycine reverses defects in glycine, serine and threonine metabolism associated with serum resistance, restores susceptibility to serum-induced cell death, and alters redox balance and glutathione (GSH) metabolism. More specifically, in Vibrio alginolyticus and Escherichia coli, exogenous glycine promotes oxidation of GSH to GSH disulfide (GSSG), disrupts redox balance, increases oxidative stress and reduces membrane integrity, leading to increased binding of complement. Antioxidant or ROS scavenging agents abrogate this effect and agents that generate or potentiate oxidation stimulate serum-mediated cell death. Analysis of several clinical isolates of E. coli demonstrates that glutathione metabolism is repressed in serum-resistant bacteria. These data suggest a novel mechanism underlying serum-resistance in pathogenic bacteria, characterized by an induced shift in the GSH/GSSG ratio impacting redox balance. The results could potentially lead to novel approaches to manage infections caused by serum-resistant bacteria both in aquaculture and human health.


Assuntos
Escherichia coli , Glicina , Humanos , Dissulfeto de Glutationa/metabolismo , Glicina/farmacologia , Glicina/metabolismo , Escherichia coli/metabolismo , Glutationa/metabolismo , Oxirredução , Estresse Oxidativo , Morte Celular
13.
Front Genet ; 12: 631230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135937

RESUMO

Skeletal muscle and adipose tissues are both involved in regulation of metabolism. In the skeletal muscle-adipose tissue crosstalk, exosomes may play an important role but the main components of exosomes are not clear. In this study, we found skeletal muscle-derived exosomes can inhibit adipogenesis of porcine preadipocytes. We identified microRNA expression profiles of muscle exosomes and adipose exosomes by high-throughput sequencing. There were 104 (both novel and known microRNAs) microRNAs differentially expressed (DE miRNAs) between M-EXO (muscle-derived exosomes) and A-EXO (adipose-derived exosomes) groups. A total of 2,137 target genes of DE miRNAs for M-EXO and 2,004 target genes of DE miRNAs for A-EXO were detected. Bioinformatic analyses revealed that some DE miRNAs of M-EXO (especially miR-221-5p) were mainly enriched in lipid-related metabolism processes. The findings may serve as a fundamental resource for understanding the detailed functions of exosomes between the skeletal muscle-adipose crosstalk and the potential relationship between skeletal muscle atrophy and obesity.

14.
Int J Gynecol Cancer ; 20(5): 905-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20606542

RESUMO

OBJECTIVE: To investigate the bladder function recovery and quality of life (QOL) using nerve-sparing radical hysterectomy (NSRH) in treating early invasive cervical carcinoma. METHODS: Subjects included patients who underwent radical hysterectomy by laparotomy for early-stage cervical carcinoma. Thirty-one patients were randomly assigned to 2 groups: group A, 15 patients who underwent NSRH; and group B, 16 patients who underwent classical radical hysterectomy. We observed the patients' general clinical information, surgical characteristics, postoperative vital signs, pathological findings, adjuvant therapies, and adverse effects. A urodynamic study was used to assess the bladder function. The patients' QOL was evaluated by Functional Assessment of Cervical Cancer Therapy (FACT-Cx). RESULTS: Twenty-nine patients completed the study. No significant differences were found in age, body mass index, surgery characteristics, pathological findings, adjuvant therapies, and main adverse effects between the 2 groups (P > 0.05). The postoperative time of bladder function recovery in group A was obviously earlier than that in group B (P < 0.05). The urodynamic study showed that the extent of bladder function recovery in group A was better than that in group B (P < 0.05). The QOL in group A evaluated 1 year after operation was improved compared with that in group B (P < 0.05). The QOL analysis showed that group A did much better than group B in social and family life, emotional well-being, working status, and the symptom correlated with the operation (P < 0.05). No significant differences were found in basic bodily functions (P > 0.05). CONCLUSIONS: Nerve-sparing radical hysterectomy is a safe and reliable technique for early invasive cervical carcinoma. The postoperative bladder function recovery and the patients' QOL were improved after NSRH compared with the control group. Therefore, NSRH could be an alternative management to modify the classical surgery for cervical carcinoma with International Federation of Gynecology and Obstetrics stages IB1 to IIA.


Assuntos
Histerectomia/métodos , Nervos Periféricos/cirurgia , Qualidade de Vida , Bexiga Urinaria Neurogênica/prevenção & controle , Bexiga Urinária/inervação , Neoplasias do Colo do Útero/cirurgia , Adulto , Feminino , Humanos , Histerectomia/efeitos adversos , Pessoa de Meia-Idade , Estudos Prospectivos , Recuperação de Função Fisiológica , Bexiga Urinária/fisiologia , Bexiga Urinaria Neurogênica/etiologia , Fenômenos Fisiológicos do Sistema Urinário , Urodinâmica , Neoplasias do Colo do Útero/patologia
15.
Sci Rep ; 10(1): 21969, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319811

RESUMO

Obese individuals are more susceptible to comorbidities than individuals of healthy weight, including cardiovascular disease and metabolic disorders. MicroRNAs are a class of small and noncoding RNAs that are implicated in the regulation of chronic human diseases. We previously reported that miR-125b plays a critical role in adipogenesis in vitro. However, the involvement of miR-125b-2 in fat metabolism in vivo remains unknown. In the present study, miR-125b-2 knockout mice were generated using CRISPR/CAS9 technology, resulting in mice with a 7 bp deletion in the seed sequence of miR-125b-2. MiR-125b-2 knockout increased the weight of liver tissue, epididymal white fat and inguinal white fat. MiR-125b-2 knockout also increased adipocyte volume in HFD-induced obese mice, while there were no significant differences in body weight and feed intake versus mice fed a normal diet. Additionally, qRT-PCR and western blot analysis revealed that the expression of the miR-125b-2 target gene SCD-1 and fat synthesis-associated genes, such as PPARγ and C/EBPα, were significantly up-regulated in miR-125b-2KO mice (P < 0.05). Moreover, miR-125b-2KO altered HFD-induced changes in glucose tolerance and insulin resistance. In conclusion, we show that miR-125b-2 is a novel potential target for regulating fat accumulation, and also a candidate target to develop novel treatment strategies for obesity and diabetes.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , MicroRNAs/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Reprodutibilidade dos Testes
16.
Sci Rep ; 10(1): 6983, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332796

RESUMO

Breast milk is the most important nutrient source for newborn mammals. Studies have reported that milk contains microRNAs (miRNAs), which are potential regulatory components. Currently, existing functional and nutritional two competing hypotheses in milk field though little date have been provided for nutritional hypothesis. In this study, we used the qRT-PCR method to evaluated whether milk miRNAs can be absorbed by newborn piglets by feeding them porcine or bovine milk. The result showed that miRNA levels (miR-2284×, 2291, 7134, 1343, 500, 223) were significantly different between bovine and porcine milk. Four miRNAs (miR-2284×, 2291, 7134, 1343) were significantly different in piglet serum after feeding porcine or bovine milk. After separated milk exosomes by ultracentrifugation, the results showed the selected milk miRNAs (miR-2284×, 2291, 7134, 1343) were present in both exosomes and supernatants, and the miRNAs showed the coincidental expression in IPEC-J2 cells. All our founding suggested that the milk miRNAs can be absorbed both in vivo and in vitro, which will building the foundation for understanding whether these sort of miRNAs exert physiological functions after being absorbed and provided additional evidence for the nutritional hypotheses.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Administração Oral , Animais , Animais Recém-Nascidos , Bovinos , Linhagem Celular , Suínos , Ultracentrifugação
17.
Metabolism ; 103: 154006, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715176

RESUMO

OBJECTIVE: Glucose and lipid metabolism disorders are a major risk factor for type II diabetes and cardiovascular diseases. Evidence has indicated that the interplay between the liver and adipose tissue is crucial in maintaining energy homeostasis. Recently, the interaction between two distant endocrine organs mainly focuses on the regulation of hormones and receptors. However, as a novel carrier in the inter-tissue communication, exosomes plays a role in liver-fat crosstalk, but its effects on glucose and lipid metabolisms are still unclear. In this study, we sought to investigate the effects of hepatic exosome-derived miR-130a-3p in the regulation of glucose/lipid metabolism in adipose tissues. MEASURE: In vivo, we constructed generalized miR-130a-3p knockout (130KO) and overexpressed (130OE) mice. Wild type (WT), 130KO and 130OE mice (n = 10) were assigned to a randomized controlled trial and were fed diets with either 10% (standard diet, SD) or 60% (high-fat diet, HFD) of total calories from fat (lard). Next, hepatic exosomes were extracted from WT-SD, 130KO-SD and 130OE-SD mice (WT-EXO, KO-EXO, OE-EXO), and 130KO mice were injected with 100 mg hepatic exosomes of different sources via tail-vein (once every 48 h) for 28 days, fed with HFD. In vitro, 3T3-L1 cells were treated with miR-130a-3p mimics, inhibitor and hepatic exosomes. Growth performance and glucose and lipid metabolic profiles were examined. RESULTS: After feeding with HFD, the weights of 130KO mice were markedly higher than WT mice. Over-expression of miR-130a-3p in 130OE mice and intravenous injection of 130OE-EXO in 130KO mice contributed to a positive correlation with the recovery of insulin resistance. In addition, miR-130a-3p mimics and 130OE-EXO treatment of 3T3-L1 cells exhibited decreasing generations of lipid droplets and increasing glucose uptake. Conversely, inhibition of miR-130a-3p in vitro and in vivo resulted in opposite phenotype changes. Furthermore, PHLPP2 was identified as a direct target of miR-130a-3p, and the hepatic exosome-derived miR-130a-3p could improve glucose intolerance via suppressing PHLPP2 to activate AKT-AS160-GLUT4 signaling pathway in adipocytes. CONCLUSIONS: We demonstrated that hepatic exosome-derived miR-130a regulated energy metabolism in adipose tissues, and elucidated a new molecular mechanism that hepatic exosome-derived miR-130a-3p is a crucial participant in organismic energy homeostasis through mediating crosstalk between the liver and adipose tissues.


Assuntos
Adipócitos/metabolismo , Exossomos/metabolismo , Intolerância à Glucose/genética , Fígado/metabolismo , MicroRNAs/genética , Fosfoproteínas Fosfatases/genética , Células 3T3-L1 , Adipogenia/genética , Animais , Regulação para Baixo/genética , Metabolismo Energético/genética , Exossomos/genética , Inativação Gênica , Intolerância à Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais/genética
18.
Cells ; 8(11)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689969

RESUMO

MicroRNAs (miRNAs) are important negative regulators of genes involved in physiological and pathological processes in plants and animals. It is worth exploring whether plant miRNAs play a cross-kingdom regulatory role in animals. Herein, we found that plant MIR167e-5p regulates the proliferation of enterocytes in vitro. A porcine jejunum epithelial cell line (IPEC-J2) and a human colon carcinoma cell line (Caco-2) were treated with 0, 10, 20, and 40 pmol of synthetic 2'-O-methylated plant MIR167e-5p, followed by a treatment with 20 pmol of MIR167e-5p for 0, 24, 48, and 72 h. The cells were counted, and IPEC-J2 cell viability was determined by the MTT and EdU assays at different time points. The results showed that MIR167e-5p significantly inhibited the proliferation of enterocytes in a dose- and time-dependent manner. Bioinformatics prediction and a luciferase reporter assay indicated that MIR167e-5p targets ß-catenin. In IPEC-J2 and Caco-2 cells, MIR167e-5p suppressed proliferation by downregulating ß-catenin mRNA and protein levels. MIR167e-5p relieved this inhibition. Similar results were achieved for the ß-catenin downstream target gene c-Myc and the proliferation-associated gene PCNA. This research demonstrates that plant MIR167e-5p can inhibit enterocyte proliferation by targeting the ß-catenin pathway. More importantly, plant miRNAs may be a new class of bioactive molecules for epigenetic regulation in humans and animals.


Assuntos
Proliferação de Células/fisiologia , Enterócitos/metabolismo , MicroRNAs/metabolismo , Plantas/metabolismo , beta Catenina/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Regulação para Baixo/fisiologia , Humanos , Camundongos , Suínos
20.
Lab Chip ; 18(11): 1633-1640, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29766180

RESUMO

Bacteria such as Acinetobacter baumannii (AB) can cause serious infections, resulting in high mortality if not diagnosed early and treated properly; there is consequently a need for rapid and accurate detection of this bacterial species. Therefore, we developed a new, nitrocellulose-based microfluidic system featuring AB-specific aptamers capable of automating the bacterial detection process via the activity of microfluidic devices composed of magnetic-composite membranes. Electromagnets were used to actuate these microfluidic devices such that the entire diagnostic process could be conducted in the integrated microfluidic system within 40 minutes with a limit of detection as low as 450 CFU per reaction for AB. Aptamers were used to capture AB in complex samples on nitrocellulose membranes, and a simple colorimetric assay was used to estimate bacterial loads. Given the ease of use, portability, and sensitivity of this aptamer-based microfluidic system, it may hold great promise for point-of-care diagnostics.


Assuntos
Aptâmeros de Nucleotídeos/química , Bactérias/isolamento & purificação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Bactérias/genética , Colódio , Colorimetria , Desenho de Equipamento , Limite de Detecção , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa