RESUMO
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
RESUMO
Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.
RESUMO
Lung cancer is a major cause of morbidity and mortality. The specific pulmonary structure to directly connect with ambient air makes it more susceptible to damage from airborne toxins. External oxidative stimuli and endogenous reactive oxygen species (ROS) play a crucial role in promoting lung carcinogenesis and development. The biological properties of higher ROS levels in tumor cells than in normal cells make them more sensitive and vulnerable to ROS injury. Therefore, the strategy of targeting ROS has been proposed for cancer therapy for decades. However, it is embarrassing that countless attempts at ROS-based therapies have had very limited success, and no FDA approval in the anticancer list was mechanistically based on ROS manipulation. Even compared with the untargetable proteins, such as transcription factors, ROS are more difficult to be targeted due to their chemical properties. Thus, the pleiotropic roles of ROS provide therapeutic potential for anticancer drug discovery, while a better dissection of the mechanistic action and signaling pathways is a prerequisite for future breakthroughs. This review discusses the critical roles of ROS in cancer carcinogenesis, ROS-inspired signaling pathways, and ROS-based treatment, exemplified by lung cancer. In particular, an eight considerations rule is proposed for ROS-targeting strategies and drug design and development.
Assuntos
Carcinogênese , Neoplasias Pulmonares , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinogênese/metabolismo , Animais , Transdução de Sinais , Antineoplásicos/farmacologiaRESUMO
It is still challenging to stabilize α-FAPbI3 perovskite for high performance optoelectrical devices. Herein, a novel strategy is proposed utilizing the synergetic electrostatic and steric effect to stabilize the α-FAPbI3 phase and suppress the ion migration. Dimethylamine (DMA+) cations are chosen as the dopant to fabricate FA0.96DMA0.04PbI3 single crystals (SCs). DFT calculations reveal that DMA+ cations can improve the stability of α-FAPbI3 phase in both thermodynamics (lower Gibbs free energy) and kinetics (higher defect formation and migration energy). The resulting SCs exhibit an environmental stability over 100 days and an extraordinary low dark current drift of 3.7 × 10-7 nA cm-1 s-1 V-1, comparable to 2D perovskite SCs. The X-ray detectors have also achieved the-state-of-the-art performance in X-ray detection and imaging. This work demonstrates the significance of electrostatic and steric effects in improving the phase and operational stability of perovskites.
RESUMO
In this study, green light-activated photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization of glycerol methacrylate was performed using an ω,ω-heterodifunctional macro-RAFT agent. Because of the different RAFT controllability of two RAFT groups toward methacrylic monomers, only one RAFT group was activated under green light irradiation, leading to the formation of a diblock copolymer macro-RAFT agent with one RAFT group located at the chain end and the other RAFT group located between two blocks. The obtained diblock copolymer macro-RAFT agent was then used to mediate aqueous photoinitiated RAFT dispersion polymerization of diacetone acrylamide (DAAM), which formed µ-A(BC)C miktoarm star polymer assemblies with a diverse set of morphologies. Comparing with the ABC triblock copolymer, it was found that the architecture of the µ-A(BC)C miktoarm star polymer facilitated the formation of higher-order morphologies. Kinetic studies indicated that the aqueous photoinitiated RAFT dispersion polymerization exhibited ultrafast polymerization behavior, with quantitative monomer conversion being achieved within 5 min. Size exclusion chromatography analysis confirmed that good RAFT control was maintained during the polymerization. A morphological phase diagram for µ-A(BC)C miktoarm star polymer assemblies was constructed by varying the monomer concentration and the [DAAM]/[Macro-RAFT] ratio. We expect that this study not only develops an approach for the preparation of miktoarm star polymer assemblies but also provides mechanistic insights into the polymerization-induced self-assembly of nonlinear polymers.
RESUMO
BACKGROUND: Syncope is a common condition that increases the risk of injury and reduces the quality of life. Abdominal pain as a precursor to vasovagal syncope (VVS) in adults is rarely reported and is often misdiagnosed.â. METHODS: We present three adult patients with VVS and presyncopal abdominal pain diagnosed by synchronous multimodal detection (transcranial Doppler [TCD] with head-up tilt [HUT]) and discuss the relevant literature. RESULTS: Case 1: A 52-year-old man presented with recurrent decreased consciousness preceded by six months of abdominal pain. Physical examinations were unremarkable. Dynamic electrocardiography, echocardiography, head and neck computed tomography angiography, magnetic resonance imaging (MRI), and video electroencephalogram showed no abnormalities. Case 2: A 57-year-old woman presented with recurrent syncope for 30 + years, accompanied by abdominal pain. Physical examination, electroencephalography, and MRI showed no abnormalities. Echocardiography showed large right-to-left shunts. Case 3: A 30-year-old woman presented with recurrent syncope for 10 + years, with abdominal pain as a precursor. Physical examination, laboratory analysis, head computed tomography, electrocardiography, and echocardiography showed no abnormalities. Syncope secondary to abdominal pain was reproduced during HUT. Further, HUT revealed vasovagal syncope, and synchronous TCD showed decreased cerebral blood flow; the final diagnosis was VVS in all cases. CONCLUSIONS: Abdominal pain may be a precursor of VVS in adults, and our findings enrich the clinical phenotypic spectrum of VVS. Prompt recognition of syncopal precursors is important to prevent incidents and assist in treatment decision-making. Abdominal pain in VVS may be a sign of sympathetic overdrive. Synchronous multimodal detection can help in diagnosing VVS and understanding hemodynamic mechanisms.
Assuntos
Síncope Vasovagal , Masculino , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Síncope Vasovagal/diagnóstico , Síncope Vasovagal/diagnóstico por imagem , Teste da Mesa Inclinada/métodos , Qualidade de Vida , Frequência Cardíaca , Síncope/complicaçõesRESUMO
Bioorthogonal decaging chemistry with both fast kinetics and high efficiency is highly demanded for in vivo applications but remains very sporadic. Herein, we describe a new bioorthogonal decaging chemistry between N-oxide and silylborane. A simple replacement of "C" in boronic acid with "Si" was able to substantially accelerate the N-oxide decaging kinetics by 106 fold (k2: up to 103 M-1 s-1). Moreover, a new N-oxide-masked self-immolative spacer was developed for the traceless release of various payloads upon clicking with silylborane with fast kinetics and high efficiency (>90%). Impressively, one such N-oxide-based self-assembled bioorthogonal nano-prodrug in combination with silylborane led to significantly enhanced tumor suppression effects as compared to the parent drug in a 4T1 mouse breast tumor model. In aggregate, this new bioorthogonal click-and-release chemistry is featured with fast kinetics and high efficiency and is perceived to find widespread applications in chemical biology and drug delivery.
RESUMO
chemistry since their establishment due to their innate functional features of molecular recognition and complexation. The rapid development of modern supramolecular chemistry has also significantly benefited from creating new macrocycles with distinctive geometries and properties. For instance, pillar[n]arenes (pillarenes), a relatively young generation of star macrocyclic hosts among the well-established ones (e.g., crown ethers, cyclodextrins, cucurbiturils, and calixarenes), promoted a phenomenal research hotspot all over the world in the past decade. Although the synthesis, host-guest properties, and various supramolecular functions of pillarenes have been intensively studied, many objective limitations and challenges still cannot be ignored. For example, high-level pillar[n]arenes (n > 7) usually do not possess applicable large-sized cavities due to structural folding and cannot be synthesized on a large scale because of the uncompetitive cyclization process. Furthermore, two functional groups must be covalently para-connected to each repeating phenylene unit, which severely limits their structural diversity and flexibility. In this context, we have developed a series of pillarene-inspired macrocycles (PIMs) using a versatile and modular synthetic strategy during the past few years, aiming to break through the synthetic limitations in traditional pillarenes and find new opportunities and challenges in supramolecular chemistry and beyond. Specifically, by grafting biphenyl units into the pillarene backbones, extended pillar[n]arenes with rigid and nanometer-sized cavities could be obtained with reasonable synthetic yields by selectively removing hydroxy/alkoxy substitutes on pillarene backbones, leaning pillar[6]arenes and leggero pillar[n]arenes with enhanced structural flexibility and cavity adaptability were obtained. By combining the two types of bridging modes in pillarenes and calixarenes, a smart macrocyclic receptor with two different but interconvertible conformational features, namely geminiarene, was discovered. Benefiting from the synthetic accessibility, facile functionalization, and superior host-guest properties in solution or the solid state, this new family of macrocycles has exhibited a broad range of applications, including but not limited to supramolecular assembly/gelation/polymers, pollutant detection and separation, porous organic polymers, crystalline/amorphous molecular materials, hybrid materials, and controlled drug delivery. Thus, in this Account, we summarize our research efforts on these PIMs. We first present an overview of their design and modular synthesis and a summary of their derivatization strategies. Thereafter, particular attention is paid to their structural features, supramolecular functions, and application exploration. Finally, the remaining challenges and perspectives are outlined for their future development. We hope that this Account and our works can stimulate further advances in synthetic macrocyclic chemistry and supramolecular functional systems, leading to practical applications in various research areas.
Assuntos
Calixarenos , Calixarenos/química , Sistemas de Liberação de Medicamentos , Conformação Molecular , Polímeros , PorosidadeRESUMO
Emx1IRES-Cre, D6-Cre and hGFAP-Cre are commonly used to conditionally manipulate gene expression or lineage tracing because of their specificity in the dorsal telencephalon during early neurogenesis as previously described. However, the spatiotemporal differences in Cre recombinase activity would lead to divergent phenotypes. Here, we compared the patterns of Cre activity in the early embryos among the three lines by mating with reporter mice. The activities of Emx1IRES-Cre, D6-Cre and hGFAP-Cre were observed in the dorsal telencephalon, starting from approximately embryonic day 9.5, 11.5 and 12.5, respectively. Although all the three lines have activity in radial glial cells, Emx1IRES-Cre fully covers the dorsal and medial telencephalon, including the archicortex and cortical hem. D6-Cre is highly restricted to the dorsal telencephalon with anterior-low to posterior-high gradients, partially covers the hippocampus, and absent in the cortical hem. Moreover, both Emx1IRES-Cre and hGFAP-Cre exhibit Cre activity outside the dorsal neocortex. Meanwhile, we used the three Cre lines to mediate Dicer knockout and observed inconsistent phenotypes, including discrepancies in radial glial cell number, survival and neurogenesis in the neocortex and hippocampus. Together we proved differences in Cre activity can perturb the resultant phenotypes, which aid researchers in appropriate experimental design.
Assuntos
Neocórtex , Animais , Hipocampo/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Neocórtex/metabolismo , NeurogêneseRESUMO
Pharmacotranscriptomics has become a powerful approach for evaluating the therapeutic efficacy of drugs and discovering new drug targets. Recently, studies of traditional Chinese medicine (TCM) have increasingly turned to high-throughput transcriptomic screens for molecular effects of herbs/ingredients. And numerous studies have examined gene targets for herbs/ingredients, and link herbs/ingredients to various modern diseases. However, there is currently no systematic database organizing these data for TCM. Therefore, we built HERB, a high-throughput experiment- and reference-guided database of TCM, with its Chinese name as BenCaoZuJian. We re-analyzed 6164 gene expression profiles from 1037 high-throughput experiments evaluating TCM herbs/ingredients, and generated connections between TCM herbs/ingredients and 2837 modern drugs by mapping the comprehensive pharmacotranscriptomics dataset in HERB to CMap, the largest such dataset for modern drugs. Moreover, we manually curated 1241 gene targets and 494 modern diseases for 473 herbs/ingredients from 1966 references published recently, and cross-referenced this novel information to databases containing such data for drugs. Together with database mining and statistical inference, we linked 12 933 targets and 28 212 diseases to 7263 herbs and 49 258 ingredients and provided six pairwise relationships among them in HERB. In summary, HERB will intensively support the modernization of TCM and guide rational modern drug discovery efforts. And it is accessible through http://herb.ac.cn/.
Assuntos
Bases de Dados Factuais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Farmacogenética/métodos , Software , Animais , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Medicamentos de Ervas Chinesas/química , Ensaios de Triagem em Larga Escala , Humanos , Internet , Camundongos , Terapia de Alvo Molecular/métodos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , TranscriptomaRESUMO
Aerosol-radiation interaction (ARI) plays a significant role in the accumulation of fine particulate matter (PM2.5) by stabilizing the planetary boundary layer and thus deteriorating air quality during haze events. However, modification of photolysis by aerosol scattering or absorbing solar radiation (aerosol-photolysis interaction or API) alters the atmospheric oxidizing capacity, decreases the rate of secondary aerosol formation, and ultimately alleviates the ARI effect on PM2.5 pollution. Therefore, the synergetic effect of both ARI and API can either aggravate or even mitigate PM2.5 pollution. To test the effect, a fully coupled Weather Research and Forecasting (WRF)-Chem model has been used to simulate a heavy haze episode in North China Plain. Our results show that ARI contributes to a 7.8% increase in near-surface PM2.5 However, API suppresses secondary aerosol formation, and the combination of ARI and API results in only 4.8% net increase of PM2.5 Additionally, API increases the solar radiation reaching the surface and perturbs aerosol nucleation and activation to form cloud condensation nuclei, influencing aerosol-cloud interaction. The results suggest that API reduces PM2.5 pollution during haze events, but adds uncertainties in climate prediction.
RESUMO
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Agregados Proteicos , Compreensão , Tauopatias/metabolismo , Doença de Alzheimer/metabolismoRESUMO
This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 µg·mL~(-1) of the absolute lethal concentration and 448 µg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Apoptose , LarvaRESUMO
Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.
RESUMO
BACKGROUND: Personalized therapy has been at the forefront of cancer care, making cancer treatment more effective. Since cancer patients respond individually to drug therapy, predicting the sensitivity of each patient to specific drugs is very helpful to apply therapeutic agents. Traditional methods focus on node (molecular) information but ignore relevant interactions among different nodes, which has very limited application in complex situations, such as cancer drug responses in real clinical practice. RESULTS: Treatment evaluation with Quantified Network (TreeQNet) is a webserver which could predict sensitivity to drugs for patients through the innovative use of proteomic and phosphoproteomic network from tumor tissues. CONCLUSION: TreeQNet service: http://bioinfo.ustc.edu.cn/ . TreeQNet source code: https://github.com/Really00/treeqnet-web-front/ .
Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteômica , Software , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: Finding correlation patterns is an important goal of analyzing biological data. Currently available methods for correlation analysis mainly use non-direct associations, such as the Pearson correlation coefficient, and focus on the interpretation of networks at the level of modules. For biological objects such as genes, their collective function depends on pairwise gene-to-gene interactions. However, a large amount of redundant results from module level methods often necessitate further detailed analysis of gene interactions. New approaches of measuring direct associations among variables, such as the part mutual information (PMI), may help us better interpret the correlation pattern of biological data at the level of variable pairs. RESULTS: We use PMI to calculate gene co-expression networks of cancer mRNA transcriptome data. Our results show that the PMI-based networks with fewer edges could represent the correlation pattern and are robust across biological conditions. The PMI-based networks recall significantly more important parts of omics defined gene-pair relationships than the Pearson Correlation Coefficient (PCC)-based networks. Based on the scores derived from PMI-recalled copy number variation or DNA methylation gene-pairs, the patients with cancer can be divided into groups with significant differences on disease specific survival. CONCLUSIONS: PMI, measuring direct associations between variables, extracts more important biological relationships at the level of gene pairs than conventional indirect association measures do. It can be used to refine module level results from other correlation methods. Particularly, PMI is beneficial to analysis of biological data of the complicated systems, for example, cancer transcriptome data.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Correlação de Dados , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , TranscriptomaRESUMO
Tuberous sclerosis complex (TSC) is a multi-system genetic disorder. Most patients have germline mutations in TSC1 or TSC2 but, 10%-15% patients do not have TSC1/TSC2 mutations detected on routine clinical genetic testing. We investigated the contribution of low-level mosaic TSC1/TSC2 mutations in unsolved sporadic patients and families with TSC. Thirty-one sporadic TSC patients negative on routine testing and eight families with suspected parental mosaicism were sequenced using deep panel sequencing followed by droplet digital polymerase chain reaction. Pathogenic variants were found in 22/31 (71%) unsolved sporadic patients, 16 were mosaic (median variant allele fraction [VAF] 6.8% in blood) and 6 had missed germline mutations. Parental mosaicism was detected in 5/8 families (median VAF 1% in blood). Clinical testing laboratories typically only report pathogenic variants with allele fractions above 10%. Our findings highlight the critical need to change laboratory practice by implementing higher sensitivity assays to improve diagnostic yield, inform patient management and guide reproductive counseling.
Assuntos
Esclerose Tuberosa , Humanos , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Mosaicismo , MutaçãoRESUMO
The maturation of sperms is dependent on the coordinated interactions between sperm and the unique epididymal luminal milieu, which is characterized by high K+ content. This study investigated the involvement of transient receptor potential vanilloid 4 (TRPV4) in the K+ secretion of epididymal epithelium. The expression level and cellular localization of TRPV4 and Ca2+-activated K+ channels (KCa) were analyzed via RT-PCR, real-time quantitative PCR, western blot and immunofluorescence. The functional role of TRPV4 was investigated using short-circuit current (ISC) and intracellular Ca2+ imaging techniques. We found a predominant expression of TRPV4 in the corpus and cauda epididymal epithelium. Activation of TRPV4 with a selective agonist, GSK1016790A, stimulated a transient decrease in the ISC of the epididymal epithelium. The ISC response was abolished by either the TRPV4 antagonists, HC067047 and RN-1734, or the removal of basolateral K+. Simultaneously, the application of GSK1016790A triggered Ca2+ influx in epididymal epithelial cells. Our data also indicated that the big conductance KCa (BK), small conductance KCa (SK) and intermediate conductance KCa (IK) were all expressed in rat epididymis. Pharmacological studies revealed that BK, but not SK and IK, mediated TRPV4-elicited transepithelial K+ secretion. Finally, we demonstrated that TRPV4 and BK were localized in the epididymal epithelium, which showed an increased expression level from caput to cauda regions of rat epididymis. This study implicates that TRPV4 plays an important role in the formation of high K+ concentration in epididymal intraluminal fluid via promoting transepithelial K+ secretion mediated by BK.
Assuntos
Epididimo , Canais de Cátion TRPV , Animais , Epididimo/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Masculino , Ratos , Espermatozoides/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
Improving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS. Thousand-grain weight, grain weight per plant, and content of starch were significantly increased in OsAT1 knock-down mutants (OsAT1-Ri) but significantly decreased in OsAT1 overexpressed lines (OsAT1-OE). In addition, the grain weight per plant increased by 6.17% to 6.78% in OsAT1-RNAi lines, whereas it decreased by 45.93% to 46.76% in OsAT1-OE lines, compared to wild-type. Moreover, the copper content was noticeably reduced in flag leaf of OsAT1-Ri lines and increased in OsAT1-OE lines. RNA-sequencing analysis of OsAT1-OE lines revealed that the genes related to starch biosynthesis and metabolism pathway were enriched in the down-regulated category. Thus, our results suggest that knock-down of OsAT1 in rice possibly reduces copper accumulation and improves the accumulation of storage starch, hence, increasing the grain size and weight. OsAT1 may be a useful gene to consider for cereal breeding programs.
Assuntos
Oryza , Ânions , Cobre , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1005485.].