Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Langmuir ; 40(8): 4447-4459, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349871

RESUMO

High-sensitivity detection of biomarkers is of great significance to improve the accuracy of disease diagnosis and the rate of occult disease diagnosis. Using a substrate modification and two-color quantum dot (QD) nanobeads (QBs), we have developed a dual fluorescence signal-enhancement immunosensor for sensitive, simultaneous detection of interleukin 6 (IL-6) and procalcitonin (PCT) at low volumes (∼20 µL). First, the QBs compatible with QDs with different surface ligands were prepared by optimizing surfactants based on the microemulsion method. Through the use of a fluorescence-linked immunosorbent assay (FLISA), the feasibility of a dual signal-enhancement immunosensor was verified, and a 5-fold enhancement of fluorescence intensity was achieved after the directional coating of the antibodies on sulfhydryl functionalization (-SH) substrates and the preparation of QBs by using a polymer and silica double-protection method. Next, a simple polydimethylsiloxane (HS-PDMS) immunosensor with a low volume consumption was prepared. Under optimal conditions, we achieved the simultaneous detection of IL-6 and PCT with a linear range of 0.05-50 ng/mL, and the limit of detection (LOD) was 24 and 32 pg/mL, respectively. The result is comparable to two-color QBs-FLISA with a sulfhydryl microplate, even though only 20% of its volume was used. Thus, the dual fluorescence signal-enhancement HS-PDMS immunosensor offers the capability of early microvolume diagnosis of diseases, while the detection of inflammatory factors is clinically important for assisting disease diagnosis and determining disease progression.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Pró-Calcitonina , Interleucina-6 , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
2.
Inorg Chem ; 63(10): 4604-4613, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38395777

RESUMO

Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.


Assuntos
Nanoestruturas , Pontos Quânticos , Biotina , Estreptavidina , Corantes Fluorescentes , Ligas
3.
Inorg Chem ; 62(8): 3474-3484, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36789761

RESUMO

CuInS2 quantum dots (CIS QDs) are considered to be promising alternatives for Cd-based QDs in the fields of biology and medicine. However, high-quality hydrophobic CIS QDs are difficult to be transferred to water due to their 1-dodecylmercaptan (DDT) ligands. Therefore, the fluorescence and stability of the prepared aqueous CIS QDs is not enough to meet the requirement for sensitive detection. Here, as large as 13 nm CuInZnS/ZnS QDs with DDT ligands were first synthesized, and then, CuInZnS/ZnS microbeads (QBs) containing thousands of QDs were successfully fabricated by a two-step approach of emulsion-solvent evaporation and surfactant substitution. Through emulsion-solvent evaporation, the CuInZnS/ZnS QDs formed microbeads in the microemulsion with dodecyl trimethylammonium bromide (DTAB), and the Förster resonance energy transfer (FRET) has been effectively overcome. Then, CO-520 was introduced to substitute DTAB to improve the stability and water solubility. Lastly, the microbeads were coated with a SiO2 shell and carboxylated. Subsequently, the constructed QBs (∼210 nm) were used as labels in a fluorescence immunosorbent assay (FLISA) for quantitative detection of heart type fatty acid binding protein (H-FABP), and the limit of detection was 0.48 ng mL-1, which indicated a greatly improved detection sensitivity compared to that of the Cd-free QDs. The highly fluorescent and stable CuInZnS/ZnS QBs will have great application prospects in many biological fields.


Assuntos
Pontos Quânticos , Emulsões , Microesferas , Pontos Quânticos/química , Dióxido de Silício , Solventes , Sulfetos/química , Tensoativos , Água/química , Compostos de Zinco/química
4.
Langmuir ; 38(16): 4969-4978, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412839

RESUMO

The surface functionalization of quantum dots (QDs) is essential for their application as a label material in a biological field. Here, a protein surface functionalization approach was introduced to combine with silica encapsulation for the sustainable and stable synthesis of QDs nanobeads for biomarker detection. The formation of QDs nanobeads was achieved by multiple mercapto groups in bovine serum albumin (BSA) macromolecules as multidentate ligands to replace hydrophobic ligands on the surface of QDs and decompression. The resulting QDs nanobeads exhibited 20 times more photoluminescence than the corresponding hydrophobic QDs and presented excellent stability under physiological conditions due to the protection of BSA and silica. The nanobeads served as a robust signal-generating reagent to construct the lateral flow immunoassay (LFIA) biosensor for the detection of glycosylated hemoglobin (HbA1c). The concentration of HbA1c was determined within 10 min with high specificity using only 60 µL of whole blood samples collected clinically. The nanobeads-based LFIA biosensor exhibited linear detection of HbA1c from 4.2% to 13.6%. The accuracy and stability of this approach in clinical utility was demonstrated by the detection of HbA1c after a long-term storage of test strips. This protein surface modification technology provides a new way for improving the biological properties of QDs in clinical diagnosis.


Assuntos
Pontos Quânticos , Hemoglobinas Glicadas , Ligantes , Pontos Quânticos/química , Soroalbumina Bovina/química , Dióxido de Silício/química
5.
Inorg Chem ; 60(9): 6503-6513, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33847486

RESUMO

Low-toxic InP quantum dots (QDs) as an ideal candidate for Cd-based QDs have tremendous potential for next-generation commercial display and biological detection applications. However, the progress in biological detection is still far behind that of the Cd-based QDs. This is mainly because the InP-based QDs are of inferior stability and photoluminescence quantum yield (PL QY) in aqueous solution. Here, PL QY of 65% and excellent stability of InP/GaP/ZnS QD@SiO2 nanoparticles have been successfully synthesized via a silica coating method. The containing thiol-capped hydrophobic InP/GaP/ZnS QDs were pre-silanized with waterless, ammonia-free hydrolysis tetraethyl orthosilicate, and subsequently, an outer silica shell was generated in the reverse microemulsion. The corresponding QD-based fluorescence-linked immunosorbent assay exhibits a high sensitivity of 0.9 ng mL-1 for C-reactive protein and the broad detection range of 1-1000 ng mL-1, which was close to that of the state-of-the-art Cd-based QD@SiO2 nanoparticles and had the highest sensitivity of Cd-free QDs so far. This work provides a very successful silica coating method for the containing thiol-capped hydrophobic QDs and the QDs highly sensitive to water and oxygen, and the obtained InP/GaP/ZnS QD@SiO2 nanoparticles were considered as the robust, biocompatible, and promising Cd-free fluorescent labels for the further ultra-sensitive detection.


Assuntos
Materiais Biocompatíveis/química , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Índio/química , Fosfinas/química , Pontos Quânticos/química , Dióxido de Silício/química , Tamanho da Partícula
6.
Nanotechnology ; 32(48)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34371487

RESUMO

The development trend ofin vitrodiagnostics is to obtain various biological information from a sample at extremely low concentration and volume, which has promoted its progress in accurate and sensitive multiplexed detection. Here, we developed a single color quantum dot (QD) based three-dimensional (3D) structure matrix microarray and conducted the detection of two inflammatory factors (C-reactive protein (CRP) and serum amyloid A (SAA)) by a self-built fluorescence detection system. This strategy increased detection sensitivity by immobilizing the antibody specifically on the 3D substrate because it captured more than about 7 times of 'effective' antibodies compared to the two-dimensional (2D) plane. Compared to the dual QDs-2D fluorescence-linked immunosorbent assay, the limit of detection (LOD) of 3D microarray based on QDs modified with amphiphilic polymers has been further improved to 0.11 ng ml-1for SAA assay and to 0.16 ng ml-1for CRP assay, respectively. By using QD microspheres (SiO2@QDs@SiO2-COOH, containing approximately 200-300 hydrophobic QDs on per SiO2sphere) as fluorescent labels, the LOD for CRP and SAA of 3D microarray reached as high as 15 pg ml-1and 86 pg ml-1, and the sensitivity was further improved by 28-fold and 425-fold, respectively. Because of its excellent performance, this QD microspheres-based 3D microarray has great application potential for highly sensitive and multiplexed quantitative detection of other biomarkers, small molecules, and antibiotic residues in biomedicine and food safety.


Assuntos
Análise em Microsséries/instrumentação , Microesferas , Pontos Quânticos/química , Anticorpos Imobilizados/química , Biomarcadores/análise , Proteína C-Reativa/análise , Imunoensaio , Limite de Detecção , Proteína Amiloide A Sérica/análise , Dióxido de Silício/química
7.
Environ Sci Technol ; 52(21): 12905-12914, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30249091

RESUMO

As the largest energy infrastructure in China, the power sector consumed approximately half of China's coal over the past decade and threatened air quality and greenhouse gas (GHG) abatement targets. In this work, we assessed the evolution of coal-fired power plants and associated emissions in China during 2010-2030 by using a unit-based emission projection model, which integrated the historical power plant information, turnover of the future power plant fleet, and evolution of end-of-pipe control technologies. We found that, driven by stringent environmental legislation, SO2, NO x, and PM2.5 (particulate matter less than 2.5 µm in diameter) emissions from coal-fired power plants decreased by 49%, 45%, and 24%, respectively, during 2010-2015, compared to 15% increase in CO2 emissions. In contrast to ever-increasing CO2 emissions until 2030 under current energy development planning, we found that aggressive energy development planning could curb CO2 emissions from the peak before 2030. Owing to the implementation of a "near zero" emission control policy, we projected emissions of air pollutants will significantly decrease during 2016-2030. Early retirement of small and low-efficiency power plants would further reduce air pollutants and CO2 emissions. Our study explored various mitigation pathways for China's coal-fired power plants, which could reduce coal consumption, air pollutants, and CO2 emissions and improve energy efficiency.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , China , Carvão Mineral , Centrais Elétricas
8.
J Nanobiotechnology ; 15(1): 35, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464873

RESUMO

BACKGROUND: The conventional and widely used enzyme-linked immunosorbent assays (ELISA), due to specificity and high-sensitivity, were suitable in vitro diagnosis. But enzymes are vulnerable to the external conditions, and the complex operation steps limit its application. Semiconductor quantum dots have been successfully used in biological and medical research due to the high photoluminescence and high resistance to photobleaching. In this study, we have developed a novel quantum dot-labeled immunosorbent assay for rapid disease detection of C-reactive protein (CRP). RESULTS: The assay for the detection of CRP can provide a wide analytical range of 1.56-400 ng/mL with the limit of detection (LOD) = 0.46 ng/mL and the limit of quantification = 1.53 ng/mL. The precision of the assay has been confirmed for low coefficient of variation, less than 10% (intra-assay) and less than 15% (inter-assay). The accuracy of assay meets the requirements with the recoveries of 95.4-105.7%. Furthermore, clinical samples have been collected and used for correlation analysis between this FLISA and gold standard Roche immunoturbidimetry. It shows excellent accurate concordance and the correlation coefficient value (R) is as high as 0.989 (n = 34). CONCLUSIONS: This in vitro quantum dot-based detection method offers a lower LOD and a wide liner detection range than ELISA. The total reaction time is only 50 min, which is much shorter than the commercialization ELISA (about 120 min). All of the results show that a convenient, sensitive, and accurate fluorescence-linked immunosorbent assay method has been well established for the detection of CRP samples. Therefore, this method has immense potential for the development of rapid and cost-effective in vitro diagnostic kits.


Assuntos
Proteína C-Reativa/análise , Compostos de Cádmio/química , Corantes Fluorescentes/química , Técnicas de Imunoadsorção , Pontos Quânticos/química , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Anticorpos Monoclonais/química , Ensaio de Imunoadsorção Enzimática/economia , Humanos , Técnicas de Imunoadsorção/economia , Imunoadsorventes/química , Limite de Detecção , Fatores de Tempo
9.
Talanta ; 269: 125416, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000240

RESUMO

The excellent optical properties of quantum dots (QDs) make them as an ideal fluorescent probe for multiplexed detection, however, the interference between different emission spectra, the dependence of excitation wavelengths, and the sharp decrease of quantum yield (QY) during surface modification are issues that cannot be ignored. Herein, a dual protection scheme of polymer and silica was proposed to prepare high-quality three-color QDs nanobeads using QDs with different ligands. In comparison with single-core QDs, the fluorescence signal of the prepared QD nanobeads (QBs) is increased by more than 1,000 times and has better stability. Considering the excitation efficiency of QDs, we tailor three-color QBs as fluorescent probes based on fluorescence-linked immunosorbent assays (tQBs-FLISA) to detect multiple inflammatory biomarkers simultaneously with tunable detection ranges. This resulted in highly sensitive detection of three inflammatory biomarkers in comparison to the single-core QD-FLISA, the sensitivities of C-reactive protein (CRP), serum amyloid A (SAA), and procalcitonin (PCT) were increased by 16-fold, 19-fold, and 5-fold, respectively, to 0.48 ng/mL, 0.42 ng/mL, and 10 pg/mL. Furthermore, the tQBs-FLISA showed good accuracy without interference from common serum factors. In this strategy, a three-color QBs suitable for multilevel sensitivity and tunable detection range was tailored using the versatile polymer and silica dual protection method, building high-performance immunosensor for in vitro diagnostics (IVD).


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Técnicas Biossensoriais/métodos , Imunoensaio , Dióxido de Silício , Biomarcadores , Polímeros
10.
Talanta ; 276: 126296, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795648

RESUMO

Highly stable and multicolor photoluminescent (PL) quantum dots (QDs) have attracted widespread attention as ideal probe materials in the field of in vitro diagnostics (IVD), especially the fluorescence-linked immunosorbent assay (FLISA), due to their advantages of high-throughput, high stability, and high sensitivity. However, the size of QDs as fluorescent probes have significant effects on antigen-antibody performance. Therefore, it is critical to design suitable QDs for obtain excellent quantitative detection-based biosensors. In this paper, we prepared different sizes of aqueous QDs (30 nm, 116 nm, 219 nm, and 320 nm) as fluorescent probes to optimize the competitive FLISA platform. The SARS-CoV-2 neutralizing antibody (NTAB) assay was used as an example, and it was found that the size of the QDs has a significant impact on the antigen-antibody binding efficiency and detection sensitivity in competitive FLISA platform. The results showed that these QD nanobeads (QBs, ∼219 nm) could be used as a labeled probe for competitive FLISA, with half-maximal inhibitory concentration (IC50) of 1.34 ng/mL and limit of detection (LOD) of 0.21 pg/mL for NTAB detection. More importantly, the results showed good specificity and accuracy, and the QB219 probe was able to efficiently bind NTAB without interference from other substances in the serum. Given the above advantages, the nanoprobe material (∼200 nm) offers considerable potential as a competitive FLISA platform in the field of IVD.


Assuntos
Pontos Quânticos , SARS-CoV-2 , Pontos Quânticos/química , Humanos , SARS-CoV-2/imunologia , Limite de Detecção , Corantes Fluorescentes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Tamanho da Partícula , COVID-19/diagnóstico , COVID-19/sangue , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Técnicas Biossensoriais/métodos , Fluorescência
11.
Nanoscale ; 15(12): 5560-5578, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36866747

RESUMO

Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.


Assuntos
Imunoadsorventes , Pontos Quânticos , Fluorescência
12.
Anal Chim Acta ; 1265: 341336, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37230576

RESUMO

This study aimed to construct a novel DNA triplex molecular switch modified with DNA tetrahedron (DTMS-DT) with sensitive response to extracellular pH using a DNA tetrahedron as the anchoring unit and DNA triplex as the response unit. The results showed that the DTMS-DT had desirable pH sensitivity, excellent reversibility, outstanding anti-interference ability, and good biocompatibility. Confocal laser scanning microscopy suggested that the DTMS-DT could not only be stably anchored on the cell membrane but also be employed to dynamically monitor the change in extracellular pH. Compared with the reported probes for extracellular pH monitoring, the designed DNA tetrahedron-mediated triplex molecular switch exhibited higher cell surface stability and brought the pH-responsive unit closer to the cell membrane surface, making the results more reliable. In general, developing the DNA tetrahedron-based DNA triplex molecular switch is helpful for understanding and illustrating the pH dependent cell behaviors and disease diagnostics.


Assuntos
DNA , Concentração de Íons de Hidrogênio , DNA/química , Membrana Celular/metabolismo , Conformação de Ácido Nucleico
13.
Anal Chim Acta ; 1237: 340534, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442931

RESUMO

Quantum dots (QDs) have been considered as the promising fluorescent labeling material, which is expected to meet the requirement of high-sensitivity detection in clinical diagnostics. Some common metal ions are known to affect the stability and fluorescence properties of QDs, but scarcely any systematic research has been done about their impacts on QD-based bio-detection. By evaluating the effect of Ca2+ metal ions on the properties of aqueous QDs, a new metal ion-QD fluorescence signal amplification sensor (i.e., Ca2+-QD-fluorescence-linked immunosorbent assay, Ca2+-QD-FLISA) has been developed for the detection of inflammatory biomarkers with high sensitivity. Compared with the common QD-FLISA, the detection sensitivity for CRP of Ca2+-QD-FLISA was improved by a 4-fold of magnitude to 0.23 ng/mL, and this assay showed good selectivity, high accuracy, and excellent repeatability. The versatility of the QD-FLISA method were also validated by using different metal ion-QD probes (Ca2+, Mg2+, Ba2+, Fe2+, and Mn2+) to detect CRP, serum amyloid A (SAA), and procalcitonin (PCT). The significant improvement in detection sensitivity was achieved due to the crosslinking of aqueous QDs by Ca2+ ions to enhance fluorescence and at the same time promote antigen-antibody binding efficiency. The present study illustrates the versatility of metal ion-QD-FLISA as a simple and effective method to detect a wide range of biomarkers with high sensitivity and accuracy.


Assuntos
Pontos Quânticos , Íons , Pró-Calcitonina , Biomarcadores , Imunoadsorventes
14.
Environ Sci Ecotechnol ; 16: 100264, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37065008

RESUMO

Product trade plays an increasing role in relocating production and the associated air pollution impact among sectors and regions. While a comprehensive depiction of atmospheric pollution redistribution through trade chains is missing, which may hinder targeted clean air cooperation among sectors and regions. Here, we combined five state-of-the-art models from physics, economy, and epidemiology to track the anthropogenic fine particle matters (PM2.5) related premature mortality along the supply chains within China in 2017. Our results highlight the key sectors that affect PM2.5-related mortality from both production and consumption perspectives. The consumption-based effects from food, light industry, equipment, construction, and services sectors, caused 2-22 times higher deaths than those from a production perspective and totally contributed 63% of the national total. From a cross-boundary perspective, 25.7% of China's PM2.5-related deaths were caused by interprovincial trade, with the largest transfer occurring from the central and northern regions to well-developed east coast provinces. Capital investment dominated the cross-boundary effect (56% of the total) by involving substantial equipment and construction products, which greatly rely on product exports from regions with specific resources. This supply chain-based analysis provides a comprehensive quantification and may inform more effective joint-control efforts among associated regions and sectors from a health risk perspective.

15.
Membranes (Basel) ; 12(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35629784

RESUMO

Improving the contamination resistance of membranes is one of the most effective ways to address the short service life of membranes. While preparing the membrane system structure, doping nanoparticles into the polymer matrix is beneficial to the preparation of high-performance membranes. To develop a new structure for membrane contamination protection, in this study, a novel asymmetric polyamide 66 composite ultrafiltration (UF) membrane was fabricated by incorporating different masses (ranging from zero to 0.5 wt.%) of graphene oxide (GO) into the polyamide 66 microporous substrate, using formic acid and propylene carbonate as solvents. The effects of GO doping on the morphology, microporous structure and surface of ultrafiltration membranes were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), integrated thermal analysis (DSC) and contact angle (CA). In addition, pure water flux, bovine serum albumin (BSA) rejection and contamination resistance were measured to evaluate the filtration performance of different membranes. The overall performance of all the modified membranes was improved compared to pure membranes. The results of contact angle and permeation experiments showed that the addition of GO improved the hydrophilicity of the membrane, but reduced the permeability of the membrane. The minimum flux was only 3.5 L/m2·h, but the rejection rate was 92.5%. Most noteworthy was the fact that GO further enhanced the anti-pollution performance of the membranes and achieved a remarkable performance of 91.32% when the GO content was 0.5 wt.%, which was 1.36 times higher than that of the pure membrane. Therefore, optimal performance was achieved. Furthermore, the UF membrane made of composite substrate offers a promising solution for the development of long-life ultrafiltration membranes with better stability, high-cost efficiency and adequate chemical durability.

16.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566874

RESUMO

Polyamide 66 microporous membranes were prepared by cold non-solvent-induced phase separation using polyamide 66-formic acid-propylene carbonate as a ternary membrane-forming system. The formed membranes exhibited a special bicontinuous structure consisting of interglued spherical crystals or interlocked bundles of microcrystalline aggregates. The variation of the microporous structure under the influence of preparation conditions, solvent, aging time, and polymer concentration affects the comprehensive performance of the membranes. For example, the cold-induced operation and the use of different membrane-forming solvents contributed to the crystallization of polyamide 66, resulting in an increased contact angle of polyamide 66 membranes, obtaining a high resistance to contamination of up to 73.5%. Moreover, the formed membranes still have high mechanical strength.

17.
Anal Chim Acta ; 1229: 340367, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156225

RESUMO

The development of functionalized surfaces with low non-specific adsorption is important for their biomedical applications. To inhibit non-specific adsorption on glass substrate, we designed a novel optical biochip by modifying a layer of dense negatively charged film (SO32-) on its substrate surface via self-assembly. Compared with the untreated glass substrate, it reduced the adsorption by about 300-fold or 400-fold by poly (styrene sulfonic acid) sodium salt (PSS), or meso-tetra (4-sulfonatophenyl) porphine dihydrochloride (TSPP) on individually the modified glass substrate. Considering the effect of fluorescence resonance energy transfer (FRET) between TSPP and the QDs in solution by mixing, a strategy of 2-layer of TSPP followed by 4-layer of PSS was designed to modify the glass for preparing biochips. Under the optimized conditions, the biochip on functionalized glass substrate co-treated with TSPP and PSS realized the sensitive quantitative detection of C-reactive protein (CRP) based on a quantum dot fluorescence immunosorbent assay (QD-FLISA). The limit of detection (LOD) for CRP achieved 0.69 ng/mL with the range of 1-1,000 ng/mL using TSPP and PSS co-treated glass substrate surface, which was respectively about 1.9-fold and 7.5-fold more sensitive to the PSS-modified biochip and the TSPP-modified biochip. This work demonstrated an effective and convenient strategy to obtain biochips with low non-specific adsorption properties on functionalized surfaces, thus providing a new approach for creating ultra-high sensitivity microchannels or microarrays on glass substrates.


Assuntos
Imunoadsorventes , Pontos Quânticos , Adsorção , Proteína C-Reativa , Imunoensaio , Pontos Quânticos/química , Sódio , Estirenos , Ácidos Sulfônicos
18.
Zhongguo Gu Shang ; 32(10): 898-903, 2019 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-32512958

RESUMO

OBJECTIVE: To evaluate the early predictive value of immature granulocytes(IGs) in postoperative infection in patients with spinal injury. METHODS: The clinical data of 78 patients with spinal cord injury underwent surgery from October 2016 to October 2018 were collected. There were 57 males and 21 females, aged from 45 to 63 years old with an average of (55.2±6.1) years. The most common cause of injury was spinal trauma or degeneration. According to the American Spinal Cord Injury Association (ASIA) classification of spinal cord injury, 37 cases were complete injury(grade A and B) and 41 cases were incomplete injury (grade C and D). All the 78 patients showed different degrees of deep and shallow sensory disturbances, and underwent CT and MRI examinations after admission. According to whether the secondary infection occurred within 1 week after surgery, the patients were divided into infected group and non-infected group. At the time of admission and 1, 3, 6 days after surgery, the immature granulocyte absolute value(IG#), immature granulocyte percentage(IG%), C-reactive protein(CRP), procalcitonin(PCT), interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α (TNF-α) were detected. Using ROC curve to compare the predictive value of IG%, IG#, and PCT in early detection of postoperative infection. The correlation between IG%, IG# and PCT was analyzed using the Spearman correlation test. RESULTS: At a week after operation, 33 patients occurred infection and 45 patients occurred no infection(infected group and non-infected group). All patients were followed up to no serious complications and deaths at the time of discharge. The proportion of complete injury in the infected group was significantly higher than that in the non-infected group(t=3.979, P=0.046), and the cervical and thoracic vertebrae were more common in the infected group, and the non-infected group was mostly lumbar injury(t=6.226, P=0.044). One day after surgery, PCT, IG%, IG# were resectively(0.71±0.10) ng/ml, 1.08±0.10, 0.20±0.05 in infected group, while in non-infected group were(0.51±0.08) ng/ml, 0.82±0.13, 0.13±0.04, there was significant difference between two groups(P<0.001). At 3 days postoperatively, CRP, PCT, IL-6, IL-1ß, TNF-α, IG%, IG# were resectively (80.47±15.74) mg/L, (2.39±0.27) ng/ml, (15.74±3.85) pg/ml, (16.47±4.75) pg/ml, (2.18±0.57) ng/ml, 0.28±0.10, 1.38±0.54 in injected group, while in non-infected group were(62.42±14.68) mg/L, (0.89±0.21) ng/ml, (13.10±3.87)pg/ml, (14.57±3.35) pg/ml, (1.63±0.37) ng/ml, 0.09±0.01, 0.83±0.24, there was significant difference between two groups(P<0.001). At 6 days postoperatively, the laboratory parameters of the infected group were significantly higher than those of the non-infected group(P<0.001). ROC curve analysis showed that PCT, IG%, and IG# could predict early infection after spinal cord injury(P<0.001), and the area under the curve (AUC) of IG# was significantly lower than PCT and IG%(respectively 0.847, 0.947, 0.934, P<0.05). Correlation analysis showed that IG%, IG# and PCT were significantly correlated, and the correlation coefficients were 0.724 and 0.472, respectively(P<0.001). CONCLUSIONS: The elevated levels of IG%, IG# and PCT in patients with spinal cord injury within 24 hours after surgery have high sensitivity and specificity for predicting early secondary infection. Postoperative quantification of these indicators helps early identification of patients with high risk of infection.


Assuntos
Calcitonina , Infecções , Biomarcadores , Proteína C-Reativa , Peptídeo Relacionado com Gene de Calcitonina , Feminino , Granulócitos , Humanos , Masculino , Pessoa de Meia-Idade , Precursores de Proteínas , Doenças da Coluna Vertebral/cirurgia
19.
Anal Chim Acta ; 1008: 1-7, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29420938

RESUMO

A novel QD-based immunoassay on a paper-based lateral flow system has been developed to quantitatively detect C-reactive protein (CRP). Different standard CRP antigens from 1 to 200 µg mL-1 were diluted 200-fold and only 60 µL diluted sample were needed to load onto the sample pad. The QD fluorescence signals on the test line and the control line were able to be observed within 3 min after the initiation of assay, and the limit of detection was as sensitive as 0.30 ng mL-1 by measuring the fluorescence intensity immediately afterwards with fluorescence immunoassay analyzer. The linearity on the detection of QD fluorescence signals has been established well in the range of 0.5 ng mL-1 and 1 µg mL-1 for CRP. The precision of the assay has been confirmed for low coefficient of variation (CV), satisfying less than 15% (intra-assay and inter-assay), and the accuracy of assay meets the requirements with the mean recovery of the control was 102.63%. These results indicated that such newly developed platform was reliable with high sensitivity, rapidness, and could cover a broad range of target concentrations. Furthermore, a total of 135 human serum clinical samples with inflammation or infection with the concentration of CRP from 0.2 to 200 µg mL-1 has been used to check the performance of this QD-based LFIA, it correlated very well with Roche Tina-quant CRP (Latex) (r = 0.966, n = 135).


Assuntos
Proteína C-Reativa/análise , Imunoensaio , Papel , Pontos Quânticos , Humanos
20.
RSC Adv ; 8(46): 26011-26019, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541936

RESUMO

The effects of polyaniline (PANI) with different polymerization times on the film-forming and thermoelectric properties as well as on the performance of SWCNTs/PANI composites were systematically investigated in this study. It was found that the film-forming and flexibility of PANI films improved with the increase in polymerization time. We showed that a super high conductivity of ∼4000 S cm-1 can be achieved for the SWCNTs/PANI composite film, which is the highest value for the SWCNTs/PANI system at present. Both the electrical conductivity and power factor increase by an order of magnitude than that of pure PANI films and far exceed the theoretical value of the mixture model. These results suggest that the sufficiently continuous and ordered regions on the interlayer between the filler and matrix are key to improve the electrical conductivity of composites. Finally, the maximum PF reaches 100 µW m-1 K-2 at 410 K for the 0.6CNT/PANI5h. Furthermore, it is found that the composite films have excellent environmental and structural stability. Our results can deepen the understanding of organic-inorganic thermoelectric composite systems and facilitate the practical application of flexible and wearable thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa