Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
PLoS Genet ; 19(2): e1010640, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802400

RESUMO

The molecular mechanism of tumor metastasis, especially how metastatic tumor cells colonize in a distant site, remains poorly understood. Here we reported that ARHGAP15, a Rho GTPase activating protein, enhanced gastric cancer (GC) metastatic colonization, which was quite different from its reported role as a tumor suppressor gene in other cancers. It was upregulated in metastatic lymph nodes and significantly associated with a poor prognosis. Ectopic expression of ARHGAP15 promoted metastatic colonization of gastric cancer cells in murine lungs and lymph nodes in vivo or protected cells from oxidative-related death in vitro. However, genetic downregulation of ARHGAP15 had the opposite effect. Mechanistically, ARHGAP15 inactivated RAC1 and then decreased intracellular accumulation of reactive oxygen species (ROS), thus enhancing the antioxidant capacity of colonizing tumor cells under oxidative stress. This phenotype could be phenocopied by inhibition of RAC1 or rescued by the introduction of constitutively active RAC1 into cells. Taken together, these findings suggested a novel role of ARHGAP15 in promoting gastric cancer metastasis by quenching ROS through inhibiting RAC1 and its potential value for prognosis estimation and targeted therapy.


Assuntos
Neoplasias Gástricas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/genética , Regulação para Baixo , Estresse Oxidativo , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral
2.
Plant J ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703081

RESUMO

A fundamental question in developmental biology is how to regulate grain size to improve crop yields. Despite this, little is still known about the genetics and molecular mechanisms regulating grain size in crops. Here, we provide evidence that a putative protein kinase-like (OsLCD3) interacts with the S-adenosyl-L-methionine synthetase 1 (OsSAMS1) and determines the size and weight of grains. OsLCD3 mutation (lcd3) significantly increased grain size and weight by promoting cell expansion in spikelet hull, whereas its overexpression caused negative effects, suggesting that grain size was negatively regulated by OsLCD3. Importantly, lcd3 and OsSAMS1 overexpression (SAM1OE) led to large and heavy grains, with increased ethylene and decreased polyamines production. Based on genetic analyses, it appears that OsLCD3 and OsSAMS1 control rice grain size in part by ethylene/polyamine homeostasis. The results of this study provide a genetic and molecular understanding of how the OsLCD3-OsSAMS1 regulatory module regulates grain size, suggesting that ethylene/polyamine homeostasis is an appropriate target for improving grain size and weight.

3.
Apoptosis ; 29(5-6): 785-798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517601

RESUMO

Osteoarthritis (OA) is a common disease in middle-aged and elderly people. An imbalance in calcium ion homeostasis will contribute to chondrocyte apoptosis and ultimately lead to the progression of OA. Transient receptor potential channel 4 (TRPV4) is involved in the regulation of intracellular calcium homeostasis. TRPV4 is expressed in primary cilia, which can sense mechanical stimuli from outside the cell, and its abnormal expression is closely related to the development of OA. Low-intensity pulsed ultrasound (LIPUS) can alleviate chondrocyte apoptosis while the exact mechanism is unclear. In this project, with the aim of revealing the mechanism of action of LIPUS, we proposed to use OA chondrocytes and animal models, LIPUS intervention, inhibition of primary cilia, use TRPV4 inhibitors or TRPV4 agonist, and use Immunofluorescence (IF), Immunohistochemistry (IHC), Western Blot (WB), Quantitative Real-time PCR (QP) to detect the expression of cartilage synthetic matrix and endoplasmic reticulum stress markers. The results revealed that LIPUS altered primary cilia expression, promoted synthetic matrix metabolism in articular chondrocytes and was associated with primary cilia. In addition, LIPUS exerted a active effect on OA by activating TRPV4, inducing calcium inward flow, and facilitating the entry of NF-κB into the nucleus to regulate synthetic matrix gene transcription. Inhibition of TRPV4 altered primary cilia expression in response to LIPUS stimulation, and knockdown of primary cilia similarly inhibited TRPV4 function. These results suggest that LIPUS mediates TRPV4 channels through primary cilia to regulate the process of knee osteoarthritis in mice.


Assuntos
Condrócitos , Cílios , Osteoartrite do Joelho , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Cílios/metabolismo , Cílios/patologia , Camundongos , Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Apoptose/genética , Progressão da Doença , Camundongos Endogâmicos C57BL , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Humanos
4.
Cancer Immunol Immunother ; 73(3): 49, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349553

RESUMO

T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Espécies Reativas de Oxigênio , Estudos Prospectivos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
5.
Small ; : e2400923, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459642

RESUMO

Aqueous zinc-ion batteries (ZIBs) are the new generation electrochemical energy storage systems. Recently, two-dimensional conductive metal-organic frameworks (2D c-MOFs) are attractive to serve as cathode materials of ZIBs due to their compositional diversity, abundant active sites, and excellent conductivity. Despite the growing interest in 2D c-MOFs, their application prospects are still to be explored. Herein, a tetraoxa[8]circulene (TOC) derivative with unique electronic structure and interesting redox-active property are synthesized to construct c-MOFs. A series of novel 2D c-MOFs (Cu-TOC, Zn-TOC and Mn-TOC) with different conductivities and packing modes are obtained by combining the linker tetraoxa[8]circulenes-2,3,5,6,8,9,11,12-octaol (8OH-TOC) and corresponding metal ions. Three c-MOFs all exhibit typical semiconducting properties, and Cu-TOC exhibits the highest electrical conductivity of 0.2 S cm-1 among them. Furthermore, their electrochemical performance as cathode materials for ZIBs have been investigated. They all performed high reversible capacity, decent cycle stability and excellent rate capability. This work reveals the key insights into the electrochemical application potential of 2D c-MOFs and advances their development as cathode materials in ZIBs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38922587

RESUMO

In vitro investigations have established metformin's capacity to downregulate PCSK9 expression, suggesting a potential beneficial effect on atherogenic lipoprotein particles when combined with metformin therapy. Our objective was to assess whether metformin could mitigate statin-induced adverse effects on PCSK9, thereby improving lipid profiles in patients with coronary artery disease (CAD) but without diabetes. Employing an open-label, placebo-controlled, randomized trial, we randomized patients with CAD but without diabetes into CLA (Cholesterol-Lowering Agents alone: atorvastatin+/-ezetimibe, n=38) and Met+CLA groups (metformin plus CLA, n=33) at a 1:1 ratio. The primary endpoint was the therapeutic impact of one-month metformin combination treatment on LDL-C and PCSK9 levels. Baseline LDL-C and PCSK9 levels were 76.18 mg·dL-1 and 80.54 ng·mL-1, respectively. After one month, metformin significantly reduced LDL-C (-20.81%, P<0.001), enabling 72% of patients to attain guideline-recommended LDL-C goals. Noteworthy reductions in PCSK9 levels (-15.03%, P<0.001) were observed. Moreover, Met+CLA markedly reduced LDL particle number more than CLA alone (-10.65% vs 1.45%, P=0.009), primarily due to diminished small-dense LDL particle count. Mechanistically, our study demonstrated metformin's inhibition of statin-induced PCSK9 expression in human hepatocellular cells. In summary, a one-month metformin combination regimen reduced LDL-C levels in patients with CAD but without diabetes by inhibiting PCSK9 expression.

7.
Anal Bioanal Chem ; 416(1): 141-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934249

RESUMO

In this study, two mutant strains, TBC and TBC+, able to biosynthesize a novel functional magnetosome-nanobody (Nb), were derived from the magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. The magnetosome-Nbs biosynthesized by TBC+ containing multi-copies of the Nb gene had a higher binding ability to an environmental pollutant, tetrabromobisphenol A (TBBPA), than those biosynthesized by TBC containing only one copy of the Nb gene. The magnetosome-Nbs from TBC+ can effectively bind to TBBPA in solutions with high capacity without being affected by a broad range of NaCl and methanol concentrations as well as pH. Therefore, a magnetosome-Nb-based enzyme-linked immunosorbent assay (ELISA) was developed and optimized for the detection of TBBPA, yielding a half-maximum signal inhibition concentration of 0.23 ng/mL and a limit of detection of 0.025 ng/mL. The assay was used to detect TBBPA in spiked river water samples, giving average recoveries between 90 and 120% and coefficients of variation of 2.5-6.3%. The magnetosome-Nb complex could be reused 4 times in ELISA without affecting the performance of the assay. Our results demonstrate the potential of magnetosome-Nbs produced by TBC+ as cost-effective and environment-friendly reagents for immunoassays to detect small molecules in environmental waters.


Assuntos
Magnetossomos , Magnetossomos/metabolismo , Água , Ensaio de Imunoadsorção Enzimática , Proteínas de Bactérias/química
8.
Environ Res ; 243: 117838, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056609

RESUMO

The utilization of municipal sludge as a seed sludge for initiating the autotrophic nitrogen removal (ANR) process presents a challenge due to the negligible abundance of anaerobic ammonia-oxidizing bacteria (AnAOB). Here, a computational fluid dynamics model was used to simulate sludge volume fraction and sludge particle velocity. A high-height-to-diameter-ratio airlift inner-circulation partition bioreactor (HHAIPBR) was operated for 175 d to enrich AnAOB from municipal sludge, and the performance of the ANR process was investigated. The start-up period of HHAIPBR inoculated with municipal sludge required approximately 69 d. A high nitrogen removal performance, with a mean total nitrogen removal efficiency of 82.1%, was obtained for 1 month. The simulation results validated the presence of sludge circulation and revealed the distribution characteristics of dissolved oxygen inside the reactor, further supporting the promotion of sludge granulation via the high height-to-diameter ratio. Nitrosomonas (3.31%) of Proteobacteria and Candidatus Brocadia (6.56%) of Planctomycetota were dominant in the HHAIPBR. This study presents a viable approach for the industrial cultivation of anammox sludge and the rapid start-up of the partial nitritation-anammox system.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Nitrogênio , Oxirredução
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38621909

RESUMO

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Assuntos
Isquemia Encefálica , Panax notoginseng , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Saponinas , Triterpenos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Fator de von Willebrand , Angiogênese , Farmacologia em Rede , Ratos Sprague-Dawley , Saponinas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral
10.
Expert Rev Mol Med ; 26: e4, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095091

RESUMO

Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
11.
Mol Phylogenet Evol ; 184: 107797, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37086913

RESUMO

Pleione is an orchid endemically distributed in high mountain areas across the Hengduan Mountains (HDM), Himalayas, Southeast Asia and South of China. The unique flower shapes, rich colors and immense medicinal importance of Pleione are valuable ornamental and economic resources. However, the phylogenetic relationships and evolutionary history of the genus have not yet been comprehensively resolved. Here, the evolutionary history of Pleione was investigated using single-copy gene single nucleotide polymorphisms and chloroplast genome datasets. The data revealed that Pleione could be divided into five clades. Discordance in topology between the two phylogenetic trees and network and D-statistic analyses indicated the occurrence of reticulate evolution in the genus. The evolution could be attributed to introgression and incomplete lineage sorting. Ancestral area reconstruction suggested that Pleione was originated from the HDM. Uplifting of the HDM drove rapid diversification by creating conditions favoring rapid speciation. This coincided with two periods of consolidation of the Asian monsoon climate, which caused the first rapid diversification of Pleione from 8.87 to 7.83 Mya, and a second rapid diversification started at around 4.05 Mya to Pleistocene. The interaction between Pleione and climate changes, especially the monsoons, led to the current distribution pattern and shaped the dormancy characteristic of the different clades. In addition to revealing the evolutionary relationship of Pleione with orogeny and climate changes, the findings of this study provide insights into the speciation and diversification mechanisms of plants in the East Asian flora.


Assuntos
Genoma de Cloroplastos , Plantas , Filogenia , China , Flores
12.
Inorg Chem ; 62(5): 2334-2341, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695316

RESUMO

Crystalline organic metal chalcogenides (OMCs) are a class of organic-inorganic hybrid semiconducting materials with continuous M-X (X = S, Se, Te) networks formed by the combination of metal nodes and chalcogen atoms from the organic ligands, which display great potentials in the fields of optoelectronics, catalysis, sensing, as well as energy conversion and storage. Here, we synthesized a wave-like 2D OMC material, [(AgBF4)2Me6BHS]n (Ag-BHSMe), from AgBF4 and 1,2,3,4,5,6-hexa(methylselanyl)benzene (Me6BHS) through a simple homogeneous reaction. In the solid state, Ag-BHSMe exhibits both fluorescence emission at room temperature and phosphorescent emission at 77 K. TEM, SEM, and confocal microscopy revealed that it is an intrinsic blue luminescent microcrystalline material. In addition, we found that it exhibited a highly selective fluorescence enhancement response to Pb2+ in an aqueous solution in the range of 10-4 to 10-2 mol L-1, which demonstrates its potential as a turn-on probe for the detection of lead ions.

13.
Acta Pharmacol Sin ; 44(2): 454-464, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35918412

RESUMO

Rheumatoid arthritis (RA) is characterized by synovial inflammation, synoviocyte expansion and damage to cartilage and bone. We recently reported that peroxisome proliferator-activated receptor (PPAR)-γ inhibited the proliferation and activation of fibroblast-like synoviocytes (FLS), and was downregulated in RA synovial. In this study we investigated the role of PPAR-γ in RA and the underlying mechanisms. Adjuvant-induced arthritis (AIA) was induced in rats; from D15, AIA rats were orally administered pioglitazone (30 mg·kg-1·d-1) or rosiglitazone (4 mg·kg-1·d-1) for 14 days. Collagen-induced arthritis (CIA) was induced in wild-type and Ppar-γ+/- mice. We showed that the expression of PPAR-γ was significantly reduced, whereas that of TNF-α was markedly increased in human RA FLS. In CIA mice, knockdown of PPAR-γ expression (Ppar-γ+/-) aggravated the ankle inflammation. Similarly, T0070907 (a PPAR-γ antagonist) or si-PPAR-γ promoted the activation and inflammation of TNF-α-induced FLS in vitro. On the contrary, administration of PPAR-γ agonist pioglitazone or rosiglitazone, or injection of ad-Ppar-γ into the ankle of AIA rat in vivo induced overexpression of PPAR-γ, reduced the paw swelling and inflammation, and downregulated activation and inflammation of FLS in RA. Interesting, injection of ad-Ppar-γ into the ankle also reversed the ankle inflammation in Ppar-γ+/- CIA mice. We conducted RNA-sequencing and KEGG pathway analysis, and revealed that PPAR-γ overexpression was closely related to p53 signaling pathway in TNF-α-induced FLS. Co-IP study confirmed that p53 protein was bound to PPAR-γ in RA FLS. Taken together, PPAR-γ alleviates the inflammatory response of TNF-α-induced FLS by binding p53 in RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Ratos , Camundongos , Humanos , Animais , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/metabolismo , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Rosiglitazona/metabolismo , Pioglitazona/farmacologia , Pioglitazona/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proliferação de Células , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Membrana Sinovial/metabolismo
14.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985572

RESUMO

Vascular dementia (VD) is the second most common dementia syndrome worldwide, and effective treatments are lacking. Gastrodia elata Blume (GEB) has been used in traditional Chinese herbal medicine for centuries to treat cognitive impairment, ischemic stroke, epilepsy, and dizziness. Gastrodin (p-hydroxymethylphenyl-b-D-glucopyranoside, Gas) and Gastrodigenin (p-hydroxybenzyl alcohol, HBA) are the main bioactive components of GEB. This study explored the effects of Gas and HBA on cognitive dysfunction in VD and their possible molecular mechanisms. The VD model was established by bilateral common carotid artery ligation (2-vessel occlusion, 2-VO) combined with an intraperitoneal injection of sodium nitroprusside solution. One week after modeling, Gas (25 and 50 mg/kg, i.g.) and HBA (25 and 50 mg/kg, i.g.) were administered orally for four weeks, and the efficacy was evaluated. A Morris water maze test and passive avoidance test were used to observe their cognitive function, and H&E staining and Nissl staining were used to observe the neuronal morphological changes; the expressions of Aß1-42 and p-tau396 were detected by immunohistochemistry, and the changes in energy metabolism in the brain tissue of VD rats were analyzed by targeted quantitative metabolomics. Finally, a Hippocampus XF analyzer measured mitochondrial respiration in H2O2-treated HT-22 cells. Our study showed that Gas and HBA attenuated learning memory dysfunction and neuronal damage and reduced the accumulation of Aß1-42, P-Tau396, and P-Tau217 proteins in the brain tissue. Furthermore, Gas and HBA improved energy metabolism disorders in rats, involving metabolic pathways such as glycolysis, tricarboxylic acid cycle, and the pentose phosphate pathway, and reducing oxidative damage-induced cellular mitochondrial dysfunction. The above results indicated that Gas and HBA may exert neuroprotective effects on VD by regulating energy metabolism and mitochondrial function.


Assuntos
Demência Vascular , Ratos , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Peróxido de Hidrogênio/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Hipocampo/metabolismo
15.
Yi Chuan ; 45(9): 845-855, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731238

RESUMO

Gibberellin (GA) is an important hormone, which is involved in regulating various growth and development. GA biosynthesis pathway and synthetase have been basically clarified. Gibberellin 3ß hydroxylase (GA3ox) is the key enzyme for the synthesis of various active GA. There are two GA3ox genes (OsGA3ox1 and OsGA3ox2) in rice, and their physiological functions have been preliminarily studied. However, it is not clear how they work together to synthesize active GA to regulate rice development. In this study, the knockout mutants ga3ox1 and ga3ox2 were obtained by CRISPR/Cas9 technology. The pollen fertility of ga3ox1 decreased significantly, while the plant height of ga3ox2 decreased significantly. It shows that OsGA3ox1 is necessary for normal pollen development, while OsGA3ox2 is necessary for stem and leaf elongation. Tissue expression analysis showed that OsGA3ox1 was mainly expressed in unopened flowers, while OsGA3ox2 was mainly expressed in unexpanded leaves. The GA in different tissues of wild type (WT), and two ga3ox mutants were detected. It was found that pollen fertility is most closely related to the content of GA7, and plant height is most closely related to the content of GA1. It was found that OsGA3ox1 catalyzes GA9 to GA7 in flowers, which is closely related to pollen fertility; OsGA3ox2 catalyzes the GA20 to GA1 in unexpanded leaves, thereby regulating plant height; OsGA3ox1 catalyzes the GA19 to GA20 in roots, regulating the generation of GA3. OsGA3ox1 and OsGA3ox2 respond to developmental and environmental signals, and cooperate to synthesize endogenous GA in different tissues to regulate rice development. This study provides a reference for clarifying its role in GA biosynthesis pathway and further understanding the function of OsGA3ox.


Assuntos
Oryza , Oryza/genética , Giberelinas , Pólen , Fertilidade/genética , Flores/genética
16.
Mol Med ; 28(1): 135, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401167

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a complex autoimmune disease with multiple etiological factors, among which aberrant memory CD4 T cells activation plays a key role in the initiation and perpetuation of the disease. SIGIRR (single immunoglobulin IL-1R-related receptor), a member of the IL-1 receptor (ILR) family, acts as a negative regulator of ILR and Toll-like receptor (TLR) downstream signaling pathways and inflammation. The aim of this study was to investigate the potential roles of SIGIRR on memory CD4 T cells in RA and the underlying cellular and molecular mechanisms. METHODS: Single-cell transcriptomics and bulk RNA sequencing data were integrated to predict SIGIRR gene distribution on different immune cell types of human PBMCs. Flow cytometry was employed to determine the differential expression of SIGIRR on memory CD4 T cells between the healthy and RA cohorts. A Spearman correlation study was used to determine the relationship between the percentage of SIGIRR+ memory CD4 T cells and RA disease activity. An AIA mouse model (antigen-induced arthritis) and CD4 T cells transfer experiments were performed to investigate the effect of SIGIRR deficiency on the development of arthritis in vivo. Overexpression of SIGIRR in memory CD4 T cells derived from human PBMCs or mouse spleens was utilized to confirm the roles of SIGIRR in the intracellular cytokine production of memory CD4 T cells. Immunoblots and RNA interference were employed to understand the molecular mechanism by which SIGIRR regulates TNF-α production in CD4 T cells. RESULTS: SIGIRR was preferentially distributed by human memory CD4 T cells, as revealed by single-cell RNA sequencing. SIGIRR expression was substantially reduced in RA patient-derived memory CD4 T cells, which was inversely associated with RA disease activity and related to enhanced TNF-α production. SIGIRR-deficient mice were more susceptible to antigen-induced arthritis (AIA), which was attributed to unleashed TNF-α production in memory CD4 T cells, confirmed by decreased TNF-α production resulting from ectopic expression of SIGIRR. Mechanistically, SIGIRR regulates the IL-1/C/EBPß/TNF-α signaling axis, as established by experimental evidence and cis-acting factor bioinformatics analysis. CONCLUSION: Taken together, SIGIRR deficiency in memory CD4 T cells in RA raises the possibility that receptor induction can target key abnormalities in T cells and represents a potentially novel strategy for immunomodulatory therapy.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/fisiologia , Artrite Reumatoide/genética
17.
FASEB J ; 35(6): e21622, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33982351

RESUMO

Abundant regulatory genes and complex circuits involving non-coding RNAs (ncRNAs) monitor the formation and development of hepatic fibrosis (HF). Circular RNAs (circRNAs) are a class of RNAs generated from protein coding genes by back-splicing, playing crucial roles in various pathological processes, including HF. However, little is known about mechanisms of action of circRNAs, let alone in HF. In this study, we found circUbe2k enhanced in CCl4 -induced HF mice and LX-2 cells stimulated with TGF-ß1, regulating the development of HF. Restraining the expression of circUbe2k inhibited α-SMA and Col1α1 expression in CCl4 -induced HF mice and in LX-2 cells stimulated with TGF-ß1. Furthermore, inhibiting circUbe2k expression reduced hepatic stellate cells (HSCs) activation and proliferation in vivo and in vitro. Mechanistically, we demonstrated a direct interaction between circUbe2k and miR-149-5p, which results in the modulation of TGF-ß2 expressions. Together, circUbe2k may act as a "catalyst" of HSCs activation and HF through the circUbe2k/miR-149-5p/TGF-ß2 axis. Our results provide unprecedented evidence for a significant role for circUbe2k to serve as a potential biomarker for HF therapy.


Assuntos
Regulação da Expressão Gênica , Cirrose Hepática/patologia , MicroRNAs/genética , RNA Circular/genética , Fator de Crescimento Transformador beta2/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Animais , Tetracloreto de Carbono , Proliferação de Células , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator de Crescimento Transformador beta2/genética
18.
J Biochem Mol Toxicol ; 36(10): e23149, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35712856

RESUMO

Hepatic fibrosis (HF), a continuous wound-healing response of the liver to repeated injuries, is characterized by abnormal extracellular matrix (ECM) accumulation. Hepatic stellate cells (HSCs) are considered a major cell type for ECM production. However, recent evidence indicates the lack of effective treatments for HF. Hesperetin, a Traditional Chinese Medicine monomer, has been isolated from the fruit peel of Citrusaurantium L. (Rutaceae). Growing evidence suggests the partial function of hesperetin in HF treatment. A hesperetin derivative (HD) was synthesized in our laboratory to increase the bioavailability and the water solubility of hesperetin. In this study, we detected the functions of HD in a mouse model of CCl4 -induced HF and transforming growth factor-ß1-stimulated HSC-T6 cells, in vivo and in vitro. HD reduced histological damage and CCl4 -induced HF. Moreover, HD interference was associated with the activation of indicators in HSC-T6 cells, showing that HD is involved in HSCs activation in HF. Mechanistically, the Hedgehog pathway is involved in the HD treatment of HF, and HD may attenuate the aberrant expression of patched1. In conclusion, the studies indicate that HD may function as a potential antifibrotic Traditional Chinese Medicine monomer in HF therapy.


Assuntos
Proteínas Hedgehog , Hesperidina , Cirrose Hepática , Receptor Patched-1 , Animais , Linhagem Celular , Proteínas Hedgehog/metabolismo , Hesperidina/farmacologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos , Receptor Patched-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
Mol Ther ; 29(4): 1512-1528, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33388421

RESUMO

Cancer-associated lymphatic endothelial cells (LECs) are an active barrier to the effector arm of the anti-tumor immune response; however, it remains unclear how LECs become immunosuppressive in the tumor microenvironment (TME). Exosomal microRNAs (miRNAs) have recently been implicated in intercellular crosstalk within the TME. Here, we report a mechanistic model via which cervical cancer-secreted, exosome-encapsulated microRNA (miR)-1468-5p promotes lymphatic PD-L1 upregulation and lymphangiogenesis to impair T cell immunity. Subsequently, exosomal miR-1468-5p epigenetically activates the JAK2/STAT3 pathway in LECs by directly targeting homeobox containing 1 (HMBOX1) in the SOCS1 promoter, activating an immunosuppressive program that allows cancer cells to escape anti-cancer immunity. Furthermore, clinical data reveal that high serum exosomal miR-1468-5p levels correlate with TME immunosuppressive status and poor prognosis in cervical cancer (CCa) patients. Taken together, our results suggest that cancer-secreted exosomal miR-1468-5p instructs LECs to form an integrated immunosuppressive TME component and may be a prognostic biomarker and therapeutic target for CCa.


Assuntos
Células Endoteliais/imunologia , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Neoplasias do Colo do Útero/terapia , Antígeno B7-H1/genética , Reprogramação Celular/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunidade/genética , Imunidade/imunologia , Terapia de Imunossupressão/métodos , Janus Quinase 2/genética , Linfangiogênese/genética , Vasos Linfáticos/imunologia , Vasos Linfáticos/patologia , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia
20.
Mol Ther ; 29(1): 275-290, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33002420

RESUMO

Urothelial carcinoma (UC) is the predominant form of bladder cancer. Significant molecular heterogeneity caused by diverse molecular alterations brings about large variations in the response to treatment in UC. An improved understanding of the genetic mechanisms underlying the development and progression of UC is essential. Through deep analysis of next-generation sequencing data of 99 UC patients, we found that 18% of cases had recurrent somatic mutations in zinc finger protein gene zinc finger protein 83 (ZNF83). ZNF83 mutations were correlated with poor prognosis of UC. We also found a hotspot mutation, p.E293V, in the evolutionarily well-conserved region of ZNF83. ZNF83-E293V increased tumor growth and reduced the apoptosis of UC cells compared to wild-type ZNF83 both in vitro and in mice xenografted tumors. ZNF83-E293V activated nuclear factor κB (NF-κB) more potently than did the wild-type protein owing to its decreased transcriptional repression for S100A8. The NF-κB inhibitors could pharmacologically block the tumor growth in mice engrafted with ZNF83-E293V-transfected UC cells. These findings provide a mechanistic insight and a potential therapeutic strategy for UC, which established a foundation for using the ZNF83-E293V mutation as a predictive biomarker of therapeutic response from NF-κB inhibitors.


Assuntos
Alelos , Calgranulina A/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação , NF-kappa B/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais , Calgranulina A/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa