Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670256

RESUMO

BACKGROUND: Lumbar facet joint osteoarthritis (LFJ OA) is a common disease, and there is still a lack of effective disease-modifying therapies. Our aim was to determine the therapeutic effect of hypoxia-treated adipose mesenchymal stem cell (ADSC)-derived exosomes (Hypo-ADSC-Exos) on the protective effect against LFJ OA. METHODS: The protective effect of Hypo-ADSC-Exos against LFJ OA was examined in lumbar spinal instability (LSI)-induced LFJ OA models. Spinal pain behavioural assessments and CGRP (Calcitonin Gene-Related Peptide positive) immunofluorescence were evaluated. Cartilage degradation and subchondral bone remodelling were assessed by histological methods, immunohistochemistry, synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR), and 3D X-ray microscope scanning. RESULTS: Hypoxia enhanced the protective effect of ADSC-Exos on LFJ OA. Specifically, tail vein injection of Hypo-ADSC-Exos protected articular cartilage from degradation, as demonstrated by lower FJ OA scores of articular cartilage and less proteoglycan loss in lumbar facet joint (LFJ) cartilage than in the ADSC-Exo group, and these parameters were significantly improved compared to those in the PBS group. In addition, the levels and distribution of collagen and proteoglycan in LFJ cartilage were increased in the Hypo-ADSC-Exo group compared to the ADSC-Exo or PBS group by SR-FTIR. Furthermore, Hypo-ADSC-Exos normalized uncoupled bone remodelling and aberrant H-type vessel formation in subchondral bone and effectively reduced symptomatic spinal pain caused by LFJ OA in mice compared with those in the ADSC-Exo or PBS group. CONCLUSIONS: Our results show that hypoxia is an effective method to improve the therapeutic effect of ADSC-Exos on ameliorating spinal pain and LFJ OA progression.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteoartrite , Articulação Zigapofisária , Animais , Camundongos , Obesidade , Hipóxia
2.
J Neuroinflammation ; 20(1): 259, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951955

RESUMO

Spinal cord injury (SCI) can prompt an immediate disruption to the blood-spinal cord barrier (BSCB). Restoring the integrity of this barrier is vital for the recovery of neurological function post-SCI. The UTX protein, a histone demethylase, has been shown in previous research to promote vascular regeneration and neurological recovery in mice with SCI. However, it is unclear whether UTX knockout could facilitate the recovery of the BSCB by reducing its permeability. In this study, we systematically studied BSCB disruption and permeability at different time points after SCI and found that conditional UTX deletion in endothelial cells (ECs) can reduce BSCB permeability, decrease inflammatory cell infiltration and ROS production, and improve neurological function recovery after SCI. Subsequently, we used RNA sequencing and ChIP-qPCR to confirm that conditional UTX knockout in ECs can down-regulate expression of myosin light chain kinase (MLCK), which specifically mediates myosin light chain (MLC) phosphorylation and is involved in actin contraction, cell retraction, and tight junctions (TJs) protein integrity. Moreover, we found that MLCK overexpression can increase the ratio of p-MLC/MLC, further break TJs, and exacerbate BSCB deterioration. Overall, our findings indicate that UTX knockout could inhibit the MLCK/p-MLC pathway, resulting in decreased BSCB permeability, and ultimately promoting neurological recovery in mice. These results suggest that UTX is a promising new target for treating SCI.


Assuntos
Cadeias Leves de Miosina , Traumatismos da Medula Espinal , Animais , Camundongos , Ratos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Histona Desmetilases/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Permeabilidade , Fosforilação , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(12): 1929-1936, 2023 Dec 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38448387

RESUMO

Spinal infection caused by Parvimonas micra (P. micra) is a rare infection. The characteristic imageology includes spondylodiscitis, spondylitis, paravertebral abscess, and epidural abscess. One case of spondylodiscitis of lumbar complicated with spinal epidural abscess caused by P. micra was admitted to the Department of Spinal Surgery, Xiangya Hospital, Central South University on February, 2023. This case is a 60 years old man with lower back pain and left lower limb numbness. MRI showed spondylitis, spondylodiscitis, and epidural abscess. The patient underwent debridement, decompression and fusion surgery. The culture of surgical sample was negative. P. micra was detected by metagenomic next-generation sequencing (mNGS). The postoperative antibiotic treatment included intravenous infusion of linezolid and piperacillin for 1 week, then intravenous infusion of ceftazidime and oral metronidazole for 2 weeks, followed by oral metronidazole and nerofloxacin for 2 weeks. During the follow-up, the lower back pain and left lower limb numbness was complete remission. Spinal infection caused by P. micra is extremely rare, when the culture is negative, mNGS can help the final diagnosis.


Assuntos
Discite , Abscesso Epidural , Firmicutes , Dor Lombar , Espondilite , Masculino , Humanos , Pessoa de Meia-Idade , Discite/tratamento farmacológico , Abscesso Epidural/diagnóstico , Abscesso Epidural/tratamento farmacológico , Abscesso Epidural/cirurgia , Dor Lombar/etiologia , Hipestesia , Metronidazol
4.
Neurochem Res ; 46(4): 945-956, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33515352

RESUMO

Spinal cord injury (SCI) is a serious neurological disease. Long non-coding RNA (lncRNA) small nucleolar RNA host gene (SNHG1) and microRNA-362-3p (miR-362-3p) were confirmed to be related to neurological disorders. However, it is unclear whether SNHG1 was involved in the development of SCI via regulating miR-362-3p. PC12 cells were treated with lipopolysaccharide (LPS) to imitate the in vitro cell model of SCI. Cell ciability and apoptosis rate were detected by cell counting kit-8 (CCK-8) assay and flow cytometry assay. The levels of SNHG1, miR-362-3p, and Janus kinase-2 (Jak2) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between miR-362-3p and SNHG1 or Jak2. Besides, the levels of apoptosis- and autophagy- related proteins were detected by western blot assay. In present research, LPS suppressed cell viability, and induced apoptosis and autophagy in PC12 cells. SNHG1 knockdown could affect cell viability, and suppress cell apoptosis and autophagy in LPS-treated PC12 cells. Moreover, miR-362-3p was a target of SNHG1, miR-362-3p targeted Jak2 and negatively regulated Jak2/stat3 pathway. Our data also demonstrated that SNHG1 depletion inactivated Jak2/stat3 pathway to affect cell viability and confine apoptosis, autophagy in LPS-treated PC12 cells. Taken together, SNHG1 regulated cell viability, apoptosis and autophagy in LPS-treated PC12 cells by activating Jak2/stat3 pathway via sponging miR-362-3p.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Técnicas de Silenciamento de Genes , Janus Quinase 2/metabolismo , Lipopolissacarídeos/toxicidade , MicroRNAs/metabolismo , Células PC12 , RNA Longo não Codificante/genética , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética
5.
J Neuroinflammation ; 17(1): 134, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345320

RESUMO

BACKGROUND: Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The macrophage in SCI are skewed toward the M1 phenotype that might cause the failure to post-SCI repair. METHODS: SCI model was established in Balb/c mice, and the changes in macrophage phenotypes after SCI were monitored. Bioinformatic analyses were performed to select factors that might regulate macrophage polarization after SCI. Mouse bone marrow-derived macrophages (BMDMs) were isolated, identified, and induced for M1 or M2 polarization; the effects of lncRNA guanylate binding protein-9 (lncGBP9) and suppressor of cytokine signaling 3 (SOCS3) on macrophages polarization were examined in vitro and in vivo. The predicted miR-34a binding to lncGBP9 and SOCS3 was validated; the dynamic effects of lncGBP9 and miR-34a on SOCS3, signal transducer and activator of transcription 1 (STAT1)/STAT6 signaling, and macrophage polarization were examined. Finally, we investigated whether STAT6 could bind the miR-34a promoter to activate its transcription. RESULTS: In SCI Balb/c mice, macrophage skewing toward M1 phenotypes was observed after SCI. In M1 macrophages, lncGBP9 silencing significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of Interleukin (IL)-6 and IL-12; in M2 macrophages, lncGBP9 overexpression increased SOCS3 mRNA expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 and transforming growth factor-beta 1 (TGF-ß1), indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after the operation, further indicating that lncGBP9 silencing revised the predominance of M1 phenotype at the late stage of secondary injury after SCI, therefore improving the repair after SCI. IncGBP9 competed with SOCS3 for miR-34a binding to counteract miR-34a-mediated suppression on SOCS3 and then modulated STAT1/STAT6 signaling and the polarization of macrophages. STAT6 bound the promoter of miR-34a to activate its transcription. CONCLUSIONS: In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization through STAT1/STAT6 signaling. STAT6 bound the promoter of miR-34a to activate its transcription, thus forming two different regulatory loops to modulate the phenotype of macrophages after SCI.


Assuntos
Regulação da Expressão Gênica/fisiologia , Ativação de Macrófagos/fisiologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT6/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
6.
Mol Ther ; 27(12): 2134-2146, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31495776

RESUMO

The regeneration of the blood vessel system post spinal cord injury (SCI) is essential for the repair of neurological function. As a significant means to regulate gene expression, epigenetic regulation of angiogenesis in SCI is still largely unknown. Here, we found that Ubiquitously Transcribed tetratricopeptide repeat on chromosome X (UTX), the histone H3K27 demethylase, increased significantly in endothelial cells post SCI. Knockdown of UTX can promote the migration and tube formation of endothelial cells. The specific knockout of UTX in endothelial cells enhanced angiogenesis post SCI accompanied with improved neurological function. In addition, we found regulation of UTX expression can change the level of microRNA 24 (miR-24) in vitro. The physical binding of UTX to the promotor of miR-24 was indicated by chromatin immunoprecipitation (ChIP) assay. Meanwhile, methylation sequencing of endothelial cells demonstrated that UTX could significantly decrease the level of methylation in the miR-24 promotor. Furthermore, miR-24 significantly abolished the promoting effect of UTX deletion on angiogenesis in vitro and in vivo. Finally, we predicted the potential target mRNAs of miR-24 related to angiogenesis. We indicate that UTX deletion can epigenetically promote the vascular regeneration and functional recovery post SCI by forming a regulatory network with miR-24.


Assuntos
Células Endoteliais/citologia , Epigênese Genética , Deleção de Genes , Histona Desmetilases/fisiologia , Regeneração , Traumatismos da Medula Espinal/terapia , Animais , Movimento Celular , Proliferação de Células , Metilação de DNA , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Regiões Promotoras Genéticas , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
7.
J Synchrotron Radiat ; 26(Pt 3): 607-618, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074423

RESUMO

There has been increasing interest in using high-resolution micro-tomography to investigate the morphology of neurovascular networks in the central nervous system, which remain difficult to characterize due to their microscopic size as well as their delicate and complex 3D structure. Synchrotron radiation X-ray imaging, which has emerged as a cutting-edge imaging technology with a high spatial resolution, provides a novel platform for the non-destructive imaging of microvasculature networks at a sub-micrometre scale. When coupled with computed tomography, this technique allows the characterization of the 3D morphology of vasculature. The current review focuses on recent progress in developing synchrotron radiation methodology and its application in probing neurovascular networks, especially the pathological changes associated with vascular abnormalities in various model systems. Furthermore, this tool represents a powerful imaging modality that improves our understanding of the complex biological interactions between vascular function and neuronal activity in both physiological and pathological states.


Assuntos
Sistema Nervoso Central/irrigação sanguínea , Microvasos/diagnóstico por imagem , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Humanos
8.
J Synchrotron Radiat ; 24(Pt 2): 482-489, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28244444

RESUMO

The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.


Assuntos
Microvasos , Fibras Nervosas , Medula Espinal/diagnóstico por imagem , Animais , Imageamento Tridimensional , Microscopia de Contraste de Fase , Microvasos/diagnóstico por imagem , Ratos , Medula Espinal/irrigação sanguínea , Síncrotrons , Microtomografia por Raio-X
9.
J Synchrotron Radiat ; 24(Pt 6): 1218-1225, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091065

RESUMO

Many published literature sources have described the histopathological characteristics of post-traumatic syringomyelia (PTS). However, three-dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation-based synchrotron radiation microtomography (PB-SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB-SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB-SRµCT imaging. The quantitative parameters analyzed by PB-SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB-SRµCT images. This study demonstrated that high-resolution PB-SRµCT could be used for the 3D visualization of trauma-induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB-SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS.


Assuntos
Siringomielia/diagnóstico por imagem , Siringomielia/patologia , Microtomografia por Raio-X/métodos , Animais , Estudos de Viabilidade , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia
10.
J Synchrotron Radiat ; 23(Pt 4): 966-74, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359146

RESUMO

Many spinal cord circulatory disorders present the substantial involvement of small vessel lesions. The central sulcus arteries supply nutrition to a large part of the spinal cord, and, if not detected early, lesions in the spinal cord will cause irreversible damage to the function of this organ. Thus, early detection of these small vessel lesions could potentially facilitate the effective diagnosis and treatment of these diseases. However, the detection of such small vessels is beyond the capability of current imaging techniques. In this study, an imaging method is proposed and the potential of phase-contrast imaging (PCI)- and attenuation-contrast imaging (ACI)-based synchrotron radiation for high-resolution tomography of intramedullary arteries in mouse spinal cord is validated. The three-dimensional vessel morphology, particularly that of the central sulcus arteries (CSA), detected with these two imaging models was quantitatively analyzed and compared. It was determined that both PCI- and ACI-based synchrotron radiation can be used to visualize the physiological arrangement of the entire intramedullary artery network in the mouse spinal cord in both two dimensions and three dimensions at a high-resolution scale. Additionally, the two-dimensional and three-dimensional vessel morphometric parameter measurements obtained with PCI are similar to the ACI data. Furthermore, PCI allows efficient and direct discrimination of the same branch level of the CSA without contrast agent injection and is expected to provide reliable biological information regarding the intramedullary artery. Compared with ACI, PCI might be a novel imaging method that offers a powerful imaging platform for evaluating pathological changes in small vessels and may also allow better clarification of their role in neurovascular disorders.

11.
Eur J Orthop Surg Traumatol ; 24 Suppl 1: S221-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24700338

RESUMO

The aim of this study was to retrospectively evaluate the safety, feasibility and efficacy of one-stage posterior instrumentation combined anterior debridement and interbody fusion for treatment of active thoracic and lumbar spinal tuberculosis (TB) in children with kyphotic deformity. A total of 20 children (12 boys, 8 girls) were enrolled in this study from January 2006 to January 2011. All patients underwent one-stage posterior instrumentation combined anterior debridement and interbody fusion. Clinical and radiographic results were analyzed. Patients were followed up for 28.9 months on average. Improvement was shown in all patients with neurologic dysfunction according to American Spinal Injury Association Impairment Scale. The mean preoperative angle of kyphosis was 35.2° ± 6.8° (range 26°-47°), which reduced to 9.7° ± 1.8° (range 6°-13°) postoperatively. The mean angle of kyphosis at the last follow-up was 12.0° ± 1.9° (range 9°-15°). Erythrocyte sedimentation rate and C-reactive protein returned to normal in all patients within 6 months after surgery. All patients acquired bony fusion, and no major complications were observed through the final follow-up visit. One-stage posterior instrumentation combined anterior debridement and fusion were demonstrated to be a safe and effective method to achieve spinal decompression and kyphosis correction in children with thoracic and lumbar spinal TB.


Assuntos
Desbridamento/métodos , Cifose/cirurgia , Fusão Vertebral/métodos , Tuberculose da Coluna Vertebral/cirurgia , Adolescente , Perda Sanguínea Cirúrgica , Sedimentação Sanguínea , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Humanos , Cifose/complicações , Cifose/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Duração da Cirurgia , Cuidados Pós-Operatórios/métodos , Cuidados Pré-Operatórios/métodos , Radiografia , Estudos Retrospectivos , Vértebras Torácicas/cirurgia , Resultado do Tratamento , Tuberculose da Coluna Vertebral/complicações , Tuberculose da Coluna Vertebral/diagnóstico por imagem
12.
Mol Med Rep ; 30(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904195

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell cell migration and invasion assay data in Fig. 3C and D, and the tumour images shown in Fig. 4A were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes, which had already been published. In addition, certain of the data panels shown in Fig. 3C were overlapping, such that the data from the same original source had been selected to represent the results from allegedly differently performed experiments. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 15: 4217­4224, 2017; DOI: 10.3892/mmr.2017.6493].

13.
Bone Res ; 12(1): 19, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528029

RESUMO

Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors. Despite extensive investigations into vascular senescence associated with aging and degenerative diseases, the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress, particularly its involvement in senescence-induced inflammation, remain insufficiently elucidated. In this study, we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury (SCI). Lysine demethylase 6A (Kdm6a), commonly known as UTX, emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells (SCMECs). Upregulation of UTX induces senescence in SCMECs, leading to an amplified release of proinflammatory factors, specifically the senescence-associated secretory phenotype (SASP) components, thereby modulating the inflammatory microenvironment. Conversely, the deletion of UTX in endothelial cells shields SCMECs against senescence, mitigates the release of proinflammatory SASP factors, and promotes neurological functional recovery after SCI. UTX forms an epigenetic regulatory axis by binding to calponin 1 (CNN1), orchestrating trauma-induced SCMECs senescence and SASP secretion, thereby influencing neuroinflammation and neurological functional repair. Furthermore, local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion, reinstating a local regenerative microenvironment and enhancing functional repair after SCI. In conclusion, targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion, alleviate neuroinflammation, and provide a novel treatment strategy for SCI repair.


Assuntos
Senescência Celular , Células Endoteliais , Traumatismos da Medula Espinal , Senescência Celular/genética , Epigênese Genética , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/genética , Animais , Camundongos , Histona Desmetilases/metabolismo , Calponinas/metabolismo
14.
J Control Release ; 369: 335-350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519036

RESUMO

Vascular injury following spinal cord injury (SCI) can significantly exacerbate secondary SCI and result in neurological dysfunction. Strategies targeting angiogenesis have demonstrated potential in enhancing functional recovery post-SCI. In the context of angiogenesis, the CD146+ and CD271+ subpopulations of mesenchymal stem cells (MSCs) have been recognized for their angiogenic capabilities in tissue repair. Small extracellular vesicles (sEVs) derived from MSCs are nanoscale vesicles containing rich bioactive components that play a crucial role in tissue regeneration. However, the precise role of sEVs derived from CD146+CD271+ UCMSCs (CD146+CD271+ UCMSC-sEVs) in SCI remain unclear. In this study, CD146+CD271+ UCMSC-sEVs were non-invasively administered via intranasal delivery, demonstrating a significant capacity to stimulate angiogenesis and improve functional recovery in mice following SCI. Furthermore, in vitro assessments revealed the effective enhancement of migration and tube formation capabilities of the murine brain microvascular endothelial cell line (bEnd.3) by CD146+CD271+UCMSC-sEVs. MicroRNA array analysis confirmed significant enrichment of multiple microRNAs within CD146+CD271+ UCMSC-sEVs. Subsequent in vivo and in vitro experiments demonstrated that CD146+CD271+ UCMSC-sEVs promote enhanced angiogenesis and improved functional recovery mediated by miR-27a-3p. Further mechanistic studies revealed that miR-27a-3p sourced from CD146+CD271+ UCMSC-sEVs enhances migration and tube formation of bEnd.3 cells in vitro by suppressing the expression of Delta Like Canonical Notch Ligand 4 (DLL4), thereby promoting angiogenesis in vivo. Collectively, our results demonstrate that a crucial role of CD146+CD271+ UCMSC-sEVs in inhibiting DLL4 through the transfer of miR-27a-3p, which leads to the promotion of angiogenesis and improved functional recovery after SCI.


Assuntos
Administração Intranasal , Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Camundongos , Linhagem Celular , Antígeno CD146/metabolismo , MicroRNAs/administração & dosagem , Recuperação de Função Fisiológica , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Movimento Celular , Células Endoteliais/metabolismo , Masculino
15.
J Orthop Res ; 41(6): 1320-1334, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36205185

RESUMO

Chronic spinal cord injury (CSCI) is a catastrophic disease of the central nervous system (CNS), resulting in partial or complete loss of neurological function. N6-methyladenosine (m6A) is the most common form of reversible posttranslational modification at the RNA level. However, the role of m6A modification in CSCI remains unknown. In this study, we established a CSCI model using a water-absorbable polyurethane polymer, with behavioral assessment, electrophysiological analysis, and histochemical staining for validation. Methylated RNA immunoprecipitation sequencing (meRIP-seq) and messenger RNA sequencing (mRNA-seq) were jointly explored to compare the differences between CSCI spinal tissue and normal spinal tissue. Furthermore, real-time quantitative reverse transcription pcr (qRT-PCR), western blot analysis, and immunofluorescence staining were used to analyze m6A modification-related proteins. We found that water-absorbable polyurethane polymer simulated well chronic spinal cord compression. Basso mouse scale scores and electrophysiological analysis showed continuous neurological function decline after chronic compression of the spinal cord. meRIP-seq identified 642 differentially modified m6A genes, among which 263 genes were downregulated and 379 genes were upregulated. mRNA-seq showed that 1544 genes were upregulated and 290 genes were downregulated after CSCI. Gene Ontology terms and enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified. qRT-PCR, western blotting, and immunofluorescence staining showed that Mettl14, Ythdf1, and Ythdf3 were significantly upregulated after CSCI. Our study revealed a comprehensive profile of m6A modifications in CSCI which may act as a valuable key for future research on CSCI.


Assuntos
Poliuretanos , Traumatismos da Medula Espinal , Animais , Camundongos , Metilação , RNA , RNA Mensageiro
16.
Anal Chim Acta ; 1271: 341434, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37328242

RESUMO

During the immuno-inflammatory pathophysiological process of spinal cord injury, traumatic brain injury, and ischemic stroke, macrophages play an important role in phagocytizing and clearing degenerated myelin debris. After phagocytizing myelin debris, the biochemical phenotypes related to the biological function of macrophages show vast heterogeneity; however, it is not fully understood. Detecting biochemical changes after myelin debris phagocytosis by macrophages at a single-cell level is helpful to characterize phenotypic and functional heterogeneity. In this study, based on the cell model of myelin debris phagocytosis by macrophages in vitro, the biochemical changes in macrophages were investigated using Synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy. Infrared spectrum fluctuations, principal component analysis, and cell-to-cell Euclidean distance statistical analysis of specific spectrum regions revealed dynamic and significant changes in proteins and lipids within macrophages after myelin debris phagocytosis. Thus, SR-FTIR microspectroscopy is a powerful identification toolkit for exploring biochemical phenotype heterogeneity transformation that may be of great importance to providing an evaluation strategy for studying cell functions related to cellular substance distribution and metabolism.


Assuntos
Bainha de Mielina , Síncrotrons , Análise de Fourier , Macrófagos , Fagocitose/fisiologia , Fenótipo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
17.
Arthritis Res Ther ; 25(1): 54, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016437

RESUMO

OBJECTIVE: Lumbar facet joint (LFJ) degeneration is one of the main causes of low back pain (LBP). Mechanical stress leads to the exacerbation of LFJ degeneration, but the underlying mechanism remains unknown. This study was intended to investigate the mechanism of LFJ degeneration induced by mechanical stress. METHODS: Here, mice primary chondrocytes were used to screen for key microRNAs induced by mechanical overloading. SA-ß-gal staining, qRT-PCR, western blot, and histochemical staining were applied to detect chondrocyte senescence in vitro and in vivo. We also used a dual-luciferase report assay to examine the targeting relationship of miRNA-325-3p (miR-325-3p) and Trp53. By using NSC-207895, a p53 activator, we investigated whether miR-325-3p down-regulated trp53 expression to reduce chondrocyte senescence. A mice bipedal standing model was performed to induce LFJ osteoarthritis. Adeno-associated virus (AAV) was intraarticularly injected to evaluate the effect of miR-325-3p on facet joint degeneration. RESULTS: We observed chondrocyte senescence both in human LFJ osteoarthritis tissues and mice LFJ after bipedally standing for 10 weeks. Mechanical overloading could promote chondrocyte senescence and senescence-associated secretory phenotype (SASP) expression. MicroRNA-array analysis identified that miR-325-3p was obviously decreased after mechanical overloading, which was further validated by fluorescence in situ hybridization (FISH) in vivo. Dual-luciferase report assay showed that miR-325-3p directly targeted Trp53 to down-regulated its expression. MiR-325-3p rescued chondrocyte senescence in vitro, however, NSC-207895 reduced this effect by activating the p53/p21 pathway. Intraarticular injection of AAV expressing miR-325-3p decreased chondrocyte senescence and alleviated LFJ degeneration in vivo. CONCLUSION: Our findings suggested that mechanical overloading could reduce the expression of miR-325-3p, which in turn activated the p53/p21 pathway to promote chondrocyte senescence and deteriorated LFJ degeneration, which may provide a promising therapeutic strategy for LFJ degeneration.


Assuntos
MicroRNAs , Osteoartrite , Articulação Zigapofisária , Animais , Humanos , Camundongos , Apoptose/genética , Condrócitos/metabolismo , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
ACS Nano ; 17(18): 18008-18024, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695238

RESUMO

Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Antígeno CD146 , Células Endoteliais , Adapaleno , Traumatismos da Medula Espinal/terapia , Fatores Imunológicos , Oligopeptídeos/farmacologia
19.
Mol Neurobiol ; 58(9): 4506-4519, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34076838

RESUMO

To identify potential regulators and investigate the molecular mechanism of macrophage polarization affecting astrocyte activation from the perspective of non-coding RNA regulation, we isolated mouse bone marrow mononuclear cells (BMMNCs)-induced macrophages toward M1 or M2a polarization. Long non-coding RNA NEAT1 and IL-33 expression levels were significantly upregulated in M2a macrophages; NEAT1 knockdown in M2a macrophages markedly reduced the protein levels of IL-33 and M2a markers, IL-4 and IL-13 concentrations, and the bacterial killing capacity of M2a macrophages. NEAT1 acted as a competing endogenous RNA (ceRNA) to regulate IL-33 expression by sponging miR-224-5p in M2a macrophages; NEAT1 knockdown upregulated miR-224-5p expression, while miR-224-5p inhibition increased the protein content and concentration of IL-33. miR-224-5p inhibition exerted the opposite effects on the protein levels of IL-33 and M2a markers, IL-4 and IL-13 concentrations, and the bacterial killing capacity of M2a macrophages compared to NEAT1 knockdown; the effects of NEAT1 knockdown were significantly reversed by miR-224-5p inhibition. M2a macrophage conditioned medium (CM) significantly suppressed the activation of A1 astrocytes. NEAT1 knockdown M2a macrophage CM led to enhanced A1 astrocyte activation while miR-224-5p-silenced M2a macrophage CM led to a blockade of A1 astrocyte activation; the effects of NEAT1 knockdown M2a macrophage CM on A1 astrocyte activation were significantly reversed by miR-224-5p inhibition in M2a macrophages. The NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization, therefore affecting A1 astrocyte activation.


Assuntos
Astrócitos/metabolismo , Interleucina-33/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/citologia , Polaridade Celular , Ativação de Macrófagos , Macrófagos/citologia , Camundongos
20.
Orthop Surg ; 13(4): 1170-1180, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33942987

RESUMO

OBJECTIVE: This study aimed to investigate the clinical effects of surgically treating lumbosacral tuberculosis with a modified posterior unilateral limited laminectomy method for debridement. METHODS: This retrospective study enrolled a total of 26 patients who were administered in our institution from January 2010 to December 2016, diagnosed with lumbosacral tuberculosis at the L5/S1 level, and underwent one-stage posterior unilateral limited laminectomy as surgical treatment for debridement, allograft of cortical bone grafting, and fixation. The erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level, visual analog scale (VAS) score, Oswestry Disability Index (ODI), and lumbosacral angle (LA, Cobb's method) were statistically compared, and the American Spinal Injury Association Impairment (ASIA) Scale was compared between the preoperative and postoperative time points to evaluate the clinical outcomes. RESULTS: All 26 patients were observed during the follow-up period, and the mean follow-up time was 1.3 ± 0.42 years. The mean age was 56 ± 7.4 years old. The average operation time was 118.1 ± 17.5 min, and the mean bleeding volume was 513.0 ± 79.6 mL. There were no intraoperative complications or tuberculous sinus, and two cases experienced hypostatic pneumonia during hospitalization, which resolved with responsive antibiotics and symptomatic supportive treatment. At the final follow-up, there was no recurrence of tuberculosis, and the ESR (11.8 ± 1.8 mm/h) and CRP (3.0 ± 1.0 mg/L) levels in all patients had returned to normal. The patients with neurologic deficits had improved, and the mean ODI was 79.9 ± 10.6 (87-62) preoperatively and significantly decreased to 20.5 ± 5.7 (11-29) at the final follow-up (P < 0.01). ASIA scale scores were improved by 1~2 grades at the last follow-up. The patients' pain levels were significantly alleviated; the mean VAS score declined to 1.2 ± 0.4 (0-2.5) at the final follow-up compared to 7.5 ± 1.6 (6.5-8.5) preoperatively (P < 0.01). All patients achieved bony graft fusion at an average time of 6.8 ± 1.2 months. Physiological lumbar lordosis was significantly improved, and the mean LA before operation was 17.6° ± 2.1°, which was significantly different from the postoperative LA (29.3° ± 7.4°, P < 0.01) at the final follow up. The LA (27.1° ± 5.5°, P = 0.15) slightly rebounded but without significance compared to the postoperative level. CONCLUSION: Only posterior approach by unilateral limited laminectomy for debridement could be served as an effective and safe method to treat short-segment lumbosacral tuberculosis without extensive anterior sacral and gravitation abscesses.


Assuntos
Transplante Ósseo/métodos , Desbridamento/métodos , Laminectomia/métodos , Região Lombossacral/cirurgia , Fusão Vertebral/métodos , Tuberculose da Coluna Vertebral/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa