RESUMO
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the type I interferon response to DNA pathogens. Aberrant activation of STING is linked to the pathology of autoimmune and autoinflammatory diseases. The rate-limiting step for the activation of STING is its translocation from the ER to the ER-Golgi intermediate compartment. Here, we found that deficiency in the Ca2+ sensor stromal interaction molecule 1 (STIM1) caused spontaneous activation of STING and enhanced expression of type I interferons under resting conditions in mice and a patient with combined immunodeficiency. Mechanistically, STIM1 associated with STING to retain it in the ER membrane, and coexpression of full-length STIM1 or a STING-interacting fragment of STIM1 suppressed the function of dominant STING mutants that cause autoinflammatory diseases. Furthermore, deficiency in STIM1 strongly enhanced the expression of type I interferons after viral infection and prevented the lethality of infection with a DNA virus in vivo. This work delineates a STIM1-STING circuit that maintains the resting state of the STING pathway.
Assuntos
Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Pré-Escolar , Chlorocebus aethiops , DNA Viral/imunologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Humanos , Imunidade Inata , Células Jurkat , Macrófagos , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Cultura Primária de Células , Imunodeficiência Combinada Severa/sangue , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/imunologia , Células VeroRESUMO
Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.
Assuntos
Antioxidantes/farmacologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Selênio/farmacologia , Selenoproteína W/metabolismo , Células Th1/citologia , Diferenciação Celular/imunologia , Polaridade Celular , Colo/imunologia , Colo/patologia , Glicina Hidroximetiltransferase/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Células Th1/imunologia , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.
Assuntos
Colesterol/metabolismo , Imunidade Inata , Interferon gama/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Humanos , Interferon beta-1b , Proteínas de Membrana/metabolismo , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismoRESUMO
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae, which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), representative members of alpha- and betaherpesviruses, respectively. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. IMPORTANCE: Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
RESUMO
While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.
Assuntos
Linfócitos B , Vetores Genéticos , Lentivirus , Receptores de Antígenos de Linfócitos B , Transdução Genética , Transgenes , Proteínas do Envelope Viral , Lentivirus/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Animais , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Humanos , Internalização do VírusRESUMO
Infection by Kaposi sarcoma-associated herpesvirus (KSHV) can cause severe consequences, such as cancers and lymphoproliferative diseases. Whole inactivated viruses (WIV) with chemically destroyed genetic materials have been used as antigens in several licensed vaccines. During KSHV productive replication, virus-like vesicles (VLVs) that lack capsids and viral genomes are generated along with virions. Here, we investigated the immunogenicity of KSHV VLVs produced from a viral mutant that was defective in capsid formation and DNA packaging. Mice immunized with adjuvanted VLVs generated KSHV-specific T cell and antibody responses. Neutralization of KSHV infection by the VLV immune serum was low but was markedly enhanced in the presence of the complement system. Complement-enhanced neutralization and complement deposition on KSHV-infected cells was dependent on antibodies targeting viral open reading frame 4 (ORF4). However, limited complement-mediated enhancement was detected in the sera of a small cohort of KSHV-infected humans which contained few neutralizing antibodies. Therefore, vaccination that induces antibody effector functions can potentially improve infection-induced humoral immunity. Overall, our study highlights a potential benefit of engaging complement-mediated antibody functions in future KSHV vaccine development. IMPORTANCE KSHV is a virus that can lead to cancer after infection. A vaccine that prevents KSHV infection or transmission would be helpful in preventing the development of these cancers. We investigated KSHV VLV as an immunogen for vaccination. We determined that antibodies targeting the viral protein ORF4 induced by VLV immunization could engage the complement system and neutralize viral infection. However, ORF4-specific antibodies were seldom detected in the sera of KSHV-infected humans. Moreover, these human sera did not potently trigger complement-mediated neutralization, indicating an improvement that immunization can confer. Our study suggests a new antibody-mediated mechanism to control KSHV infection and underscores the benefit of activating the complement system in a future KSHV vaccine.
Assuntos
Anticorpos Neutralizantes , Herpesvirus Humano 8 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Infecções por Herpesviridae , Herpesvirus Humano 8/imunologia , Fases de Leitura Aberta/imunologia , Vacinação , Proteínas Virais/imunologiaRESUMO
Background: The correlation between 5 ' -Nucleotidase ( 5 ' -NT) and the clinical outcomes in coronary artery disease (CAD) patients following percutaneous coronary intervention (PCI) is not clear. This study aims to clarify this relationship. Methods: The PRACTICE study enrolled 15,250 patients between December 2016 and October 2021. After filtering out those without 5 ' -NT data, a total of 6555 patients were analyzed with a median follow-up of 24 months. Based on the receiver operating characteristic (ROC) curve analysis, a 5 ' -NT level of 5.57 U/L was selected as the optimal cutoff value. All research samples were divided into high-value ( ≥ 5.57 U/L, n = 2346) and low-value groups ( < 5.57 U/L, n = 4209). Key clinical outcomes included all-cause death (ACD), cardiovascular death (CD), major adverse cardiovascular events (MACE), and major adverse cardiovascular and cerebrovascular events (MACCE). After separating patients into high and low value groups, multivariate Cox regression analysis was used to correct for potential confounding variables. Finally, risk ratios and their 95% confidence intervals (CIs) were calculated. Results: During the follow-up period, 129 instances of ACD were recorded-49 cases (1.2%) in the low-value group and 80 cases (3.4%) in the high-value group. Similarly, 102 CDs occurred, including 42 low-value group cases (1.0%) and 60 high-value group cases (2.6%). A total of 363 MACE occurred, including 198 low-value group cases (4.7%) and 165 high-value group cases (7%). A total of 397 cases of MACCE occurred, including 227 low-value group cases (5.4%) and 170 high-value group cases (7.2%). As serum 5 ' -NT increased, the incidence of ACD, CD, MACE and MACCE increased. After multivariate Cox regression, high 5 ' -NT levels were linked with a 1.63-fold increase in ACD risk (hazard ratio [HR] = 2.630, 95% CI: [1.770-3.908], p < 0.001) when compared to low 5 ' -NT patients. Similarly, the risk of CD, MACE, and MACCE increased by 1.298-fold (HR = 2.298, 95% CI: [1.477-3.573], p < 0.001), 41% (HR = 1.410, 95% CI: [1.124-1.768], p = 0.003) and 30.5% (HR = 1.305, 95% CI: [1.049-1.623], p = 0.017), respectively. Conclusions: high serum 5 ' -NT levels were independently correlated with adverse clinical outcomes in CAD patients following PCI, affirming its potential as a prognostic indicator.
RESUMO
Background: The C-reactive protein-albumin-lymphocyte (CALLY) index is a novel inflammatory biomarker, and its association with the prognosis of coronary artery disease (CAD) after percutaneous coronary intervention (PCI) has not previously been studied. Therefore, this study aimed to investigate the effect of using the CALLY index on adverse outcomes in CAD patients undergoing PCI. Methods: From December 2016 to October 2021, we consecutively enrolled 15,250 CAD patients and performed follow-ups for primary endpoints consisting of all-cause mortality (ACM) and cardiac mortality (CM). The CALLY index was computed using the following formula: (albumin × lymphocyte)/(C-reactive protein (CRP) × 10 4 ). The average duration of the follow-up was 24 months. Results: A total of 3799 CAD patients who had undergone PCI were ultimately enrolled in the present study. The patients were divided into four groups according to the CALLY index quartiles: Q1 ( ≤ 0.69, n = 950), Q2 (0.69-2.44, n = 950), Q3 (2.44-9.52, n = 950), and Q4 ( > 9.52, n = 949). The low-Q1 group had a significantly higher prevalence of ACM (p < 0.001), CM (p < 0.001), major adverse cardiac events (MACEs) (p = 0.002), and major adverse cardiac and cerebrovascular events (MACCEs) (p = 0.002). Kaplan-Meier analysis revealed that a low CALLY index was significantly linked with adverse outcomes. After univariate and multivariate Cox regression analysis, the risk of ACM, CM, MACEs, and MACCEs decreased by 73.7% (adjust hazard risk [HR] = 0.263, 95% CI: 0.147-0.468, p < 0.001), 70.6% (adjust HR = 0.294, 95% CI: 0.150-0.579, p < 0. 001), 37.4% (adjust HR = 0.626, 95% CI: 0.422-0.929, p = 0.010), and 41.5% (adjust HR = 0.585, 95% CI: 0.401-0.856, p = 0.006), respectively, in the Q4 quartiles compared with the Q1 quartiles. Conclusions: This study revealed that a decreased CALLY index was associated with worse prognoses for CAD patients after PCI. The categorization of patients with a decreased CALLY index could provide valuable evidence for the risk stratification of adverse outcomes in CAD patients after PCI. Clinical Trial Registration: The details are available at http://www.chictr.org.cn (Identifier: NCT05174143).
RESUMO
BACKGROUND: The gut microbiota plays a crucial role in coronary artery disease (CAD) development, but limited attention has been given to the role of the microbiota in preventing this disease. This study aimed to identify key biomarkers using metagenomics and untargeted metabolomics and verify their associations with atherosclerosis. METHODS: A total of 371 participants, including individuals with various CAD types and CAD-free controls, were enrolled. Subsequently, significant markers were identified in the stool samples through gut metagenomic sequencing and untargeted metabolomics. In vivo and in vitro experiments were performed to investigate the mechanisms underlying the association between these markers and atherosclerosis. RESULTS: Faecal omics sequencing revealed that individuals with a substantial presence of Faecalibacterium prausnitzii had the lowest incidence of CAD across diverse CAD groups and control subjects. A random forest model confirmed the significant relationship between F. prausnitzii and CAD incidence. Notably, F. prausnitzii emerged as a robust, independent CAD predictor. Furthermore, our findings indicated the potential of the gut microbiota and gut metabolites to predict CAD occurrence and progression, potentially impacting amino acid and vitamin metabolism. F. prausnitzii mitigated inflammation and exhibited an antiatherosclerotic effect on ApoE-/- mice after gavage. This effect was attributed to reduced intestinal LPS synthesis and reinforced mechanical and mucosal barriers, leading to decreased plasma LPS levels and an antiatherosclerotic outcome. CONCLUSIONS: Sequencing of the samples revealed a previously unknown link between specific gut microbiota and atherosclerosis. Treatment with F. prausnitzii may help prevent CAD by inhibiting atherosclerosis.
Assuntos
Aterosclerose , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Faecalibacterium prausnitzii/metabolismo , LipopolissacarídeosRESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer that commonly affects patients with AIDS and which is endemic in sub-Saharan Africa. The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses. Capsid assembly and genome packaging of herpesviruses are prone to interruption and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids-comprising nearly 3,000 proteins and over 1,300 Å in diameter-present a formidable challenge to atomic structure determination and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP-MCP interaction-including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain-define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.
Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/ultraestrutura , Mutagênese , Replicação Viral , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dissulfetos/metabolismo , Desenho de Fármacos , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Replicação Viral/genéticaRESUMO
BACKGROUND: Evidence is scarce on the effect of free fatty acid (FFA) level in the prognosis of coronary artery disease (CAD) patients with hypertension. This study. METHODS: A large prospective cohort study with a follow-up period of average 2 years was conducted at Xinjiang Medical University Affiliated First Hospital from December 2016 to October 2021. A total of 10,395 CAD participants were divided into groups based on FFA concentration and hypertension status, and then primary outcome mortality and secondary endpoint ischemic events were assessed in the different groups. RESULTS: A total of 222 all-cause mortality (ACMs), 164 cardiac mortality (CMs), 718 major adverse cardiovascular events (MACEs) and 803 major adverse cardiovascular and cerebrovascular events (MACCEs) were recorded during follow-up period. A nonlinear relationship between FFA and adverse outcomes was observed only in CAD patients with hypertension. Namely, a "U -shape" relationship between FFA levels and long-term outcomes was found in CAD patients with hypertension. Lower FFA level (< 310 µmol/L), or higher FFA level (≥ 580 µmol/L) at baseline is independent risk factors for adverse outcomes. After adjustment for confounders, excess FFA increases mortality (ACM, HR = 1.957, 95%CI(1.240-3.087), P = 0.004; CM, HR = 2.704, 95%CI(1.495-4.890, P = 0.001) and MACE (HR = 1.411, 95%CI(1.077-1.848), P = 0.012), MACCE (HR = 1.299, 95%CI (1.013-1.666), P = 0.040) prevalence. Low levels of FFA at baseline can also increase the incidence of MACE (HR = 1.567,95%CI (1.187-2.069), P = 0.002) and MACCE (HR = 1.387, 95%CI (1.070-1.798), P = 0.013). CONCLUSIONS: Baseline FFA concentrations significantly associated with long-term mortality and ischemic events could be a better and novel risk biomarker for prognosis prediction in CAD patients with hypertension. TRIAL REGISTRATION: The details of the design were registered on https://www.chictr.org.cn/ (Identifier NCT05174143).
Assuntos
Doença da Artéria Coronariana , Ácidos Graxos não Esterificados , Hipertensão , Humanos , Hipertensão/complicações , Hipertensão/sangue , Masculino , Feminino , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Ácidos Graxos não Esterificados/sangue , Idoso , Fatores de Risco , PrognósticoRESUMO
Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all-solid-state Li-ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+-doped, cation-disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium-deficient layer featuring a rock-salt-like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5â V. The ASSBs with the halide electrolyte Li3InCl6 and a high-loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5â V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide-based ASSBs at high voltages.
RESUMO
Background: Myocardial infarction (MI) can lead to higher cellular damage, making cell-free DNA (cfDNA) a potential biomarker for assessing disease severity. The aim of this study is to evaluate survival predictions using cfDNA measurements and assess its correlation with MI. Materials and Methods: A direct fluorescence assay was employed to measure cfDNA content in the blood samples of participants. The inclusion criteria included patients who gave informed consent, suffering from ST-elevation myocardial infraction (STEMI) based on established diagnostic criteria (joint ESC/ACC guidelines), between the age of 18 and 80 years old, and had elevated troponin biomarker levels. The study included 150 patients diagnosed with STEMI and 50 healthy volunteers as controls. Serial monitoring of patients was conducted to track their postdisease status. The rate of change of cfDNA was calculated and daily measurements for 7 days were recorded. Results: Mean levels of cfDNA were found to be 5.93 times higher in patients with STEMI compared to healthy controls, providing clear evidence of a clinical correlation between cfDNA and STEMI. Patients were further categorized based on their survival status within a 90-day period. The study observed a strong predictive relationship between the rate of change of cfDNA during daily measurements and survival outcomes. To assess its predictive capability, a receiver operating characteristics (ROC) curve analysis was performed. The ROC analysis identified an optimal cutoff value of 2.50 for cfDNA, with a sensitivity of 81.5% and specificity of 74.0% in predicting disease outcomes. Conclusion: This study demonstrates a robust association between cfDNA and STEMI, indicating that cfDNA levels can be a valuable early prognostic factor for patients. Serial measurements of cfDNA during early disease onset hold promise as an effective approach for predicting survival outcomes in MI patients.
RESUMO
Porous materials with multiple hierarchy levels can be useful as lightweight engineering structures, biomedical implants, flexible functional devices, and thermal insulators. Numerous routes have integrated bottom-up and top-down approaches for the generation of engineering materials with lightweight nature, complex structures, and excellent mechanical properties. It nonetheless remains challenging to generate ultralight porous materials with hierarchical architectures and multi-functionality. Here, the combined strategy based on Pickering emulsions and additive manufacturing leads to the development of ultralight conducting polymer foams with hierarchical pores and multifunctional performance. Direct writing of the emulsified inks consisting of the nano-oxidant-hydrated vanadium pentoxide nanowires-generated free-standing scaffolds, which are stabilized by the interfacial organization of the nanowires into network structures. The following in situ oxidative polymerization transforms the nano-oxidant scaffolds into foams consisting of a typical conducting polymer-polyaniline. The lightweight polyaniline foams featured by hierarchical pores and high surface areas show excellent performances in the applications of supercapacitor electrodes, planar micro-supercapacitors, and gas sensors. This emerging technology demonstrates the great potential of a combination of additive manufacturing with complex fluids for the generation of functional solids with lightweight nature and adjustable structure-function relationships.
RESUMO
Background: While both cystatin C and left ventricular ejection fraction (LVEF) revealed established prognostic efficacy in coronary artery disease (CAD), the relationship between cystatin C/left ventricular ejection fraction ratio (CLR) and adverse clinical outcomes among patients with CAD following percutaneous coronary intervention (PCI) remains obscure, to date. Therefore, we sought to assess the predictive efficacy of CLR among CAD patients who underwent PCI in current study. Methods: A total of 14,733 participants, including 8622 patients with acute coronary syndrome (ACS) and 6111 patients with stable coronary artery disease (SCAD), were enrolled from a prospective cohort of 15,250 CAD patients who underwent PCI and were admitted to the First Affiliated Hospital of Xinjiang Medical University from 2016 to 2021. The primary outcome of this study was mortality, including all-cause mortality (ACM) and cardiac mortality (CM). The secondary outcomes were major adverse cardiovascular events (MACEs), major adverse cardiac and cerebrovascular events (MACCEs) and nonfatal myocardial infarction (NFMI). For CLR, the optimal cut-off value was determined by utilizing receiver operating characteristic curve analysis (ROC). Subsequently, patients were assigned into two groups: a high-CLR group (CLR ≥ 0.019, n = 3877) and a low-CLR group (CLR < 0.019, n = 10,856), based on optimal cut-off value of 0.019. Lastly, the incidence of outcomes between the two groups was compared. Results: The high-CLR group had a higher incidence of ACM (8.8% vs. 0.9%), CM (6.7% vs. 0.6%), MACEs (12.7% vs. 5.9%), MACCEs (13.3% vs. 6.7%), and NFMIs (3.3% vs. 0.9%). After adjusting for confounders, multivariate Cox regression analyses revealed that patients with high-CLR had an 8.163-fold increased risk of ACM (HR = 10.643, 95% CI: 5.525~20.501, p < 0.001), a 10.643-fold increased risk of CM (HR = 10.643, 95% CI: 5.525~20.501, p < 0.001), a 2.352-fold increased risk of MACE (HR = 2.352, 95% CI: 1.754~3.154, p < 0.001), a 2.137-fold increased risk of MACCEs (HR = 2.137, 95% CI: 1.611~2.834, p < 0.001), and a 1.580-fold increased risk of NFMI (HR = 1.580, 95% CI: 1.273~1.960, p < 0.001) compared to patients with low-CLR. Conclusions: The current study indicated that a high CLR is a novel and powerful predictor of adverse long-term outcomes in CAD patients who underwent PCI, and that, it is a better predictor for patients wtih SCAD and ACS. Clinical Trial Registration: NCT05174143, http://Clinicaltrials.gov.
RESUMO
Background: To establish a modified Global Registry of Acute Coronary Events (GRACE) scoring system with an improved predictive performance compared with the traditional GRACE scoring system. Methods: We identified 5512 patients who were hospitalized with a definite diagnosis of acute myocardial infarction (AMI) from January 1, 2015, to December 31, 2020, at the Heart Center of the First Affiliated Hospital of Xinjiang Medical University through the hospital's electronic medical record system. A total of 4561 patients were enrolled after the inclusion and exclusion criteria were applied. The mean follow-up was 51.8 ± 23.4 months. The patients were divided into dead and alive groups by endpoint events. The differences between the two groups were compared using the two-sample t test and chi-square test. Adjusted traditional risk factors as well as LogBNP (B-type natriuretic peptide precursor, BNP) and the modified GRACE scoring system were included in a multifactorial COX regression model. The predictive performance of the traditional and modified GRACE scoring systems was compared by (Receiver Operating Characteristic) ROC curves. Results: Significant differences in age, heart rate, creatinine, uric acid, LogBNP, traditional GRACE score, and modified GRACE score were found between the dead and alive groups by the two-sample t test. Comparison of the two groups by the chi-square test revealed that the dead group had a higher incidence of males; higher cardiac function class; a previous history of hypertension, diabetes, coronary artery disease (CAD), or cerebrovascular disease; a history of smoking; the need for intra-aortic balloon pump (IABP) support; and more patients taking aspirin, clopidogrel, ticagrelor, and ß -blockers. The results were analyzed by a multifactorial COX regression model, and after adjusting for confounders, age, cardiac function class, history of CAD, use of aspirin and ß -blockers, and the modified GRACE scoring system were found to be associated with all-cause mortality (ACM) in patients with AMI. The ROC curve was used to compare the predictive performance of the conventional GRACE scoring system with that of the modified GRACE scoring system, and it was found that the modified GRACE scoring system (Area Under Curve (AUC) = 0.809, p < 0.001, 95% (Confidence Interval) CI (0.789-0.829)) was significantly better than the traditional GRACE scoring system (AUC = 0.786, p < 0.001, 95% CI (0.764-0.808)), the comparison between the two scores was statistically significant (p < 0.001). The change in the C statistic after 10-fold crossover internal validation of the modified GRACE score was not significant, and the integrated discrimination improvement (IDI) between the old and new models was calculated with IDI = 0.019 > 0, suggesting that the modified GRACE score has a positive improvement on the traditional GRACE score. Conclusions: The modified GRACE scoring system, established by combining B-type natriuretic peptide precursor (BNP) and the traditional GRACE scoring system, was independently associated with ACM in patients with AMI, with a larger AUC and higher predictive value than the traditional GRACE scoring system. Clinical Trial Registration: NCT02737956.
RESUMO
Background: Coronary heart disease is one of the main causes of Mortality. Many biological indicators have been used to predict the prognosis of patients with coronary heart disease. The ratio of serum globulin to albumin (GAR) has been used to predict the prognosis of patients with various cancers. It has been proven that GAR is related to the prognosis of patients with stroke. However, GAR's role in cardiovascular disease remains unclear. Our purpose was to investigate the predictive value of GAR on clinical outcomes in post-percutaneous coronary intervention (PCI) patients with coronary artery disease (CAD). Methods: From Dec. 2016 to Oct. 2021, a total of 14,994 patients undergoing PCI patients admitted to the First Affiliated Hospital of Xinjiang Medical University were divided into high GAR group (GAR ≥ 0.76, n = 4087) and low GAR group (GAR < 0.76, n = 10,907). The incidence of adverse outcomes including all-cause mortality (ACM), cardiovascular mortality (CM), major adverse cardiovascular events (MACE) and major adverse cardiovascular and cerebrovascular events (MACCE) was compared between the two groups. Multivariate Cox regression was used to adjust for the effects of confounding factors, while hazard ratios (HRs) and 95% confidence intervals (95% CI) were calculated. Median follow-up time was 24 months. Results: Compared with the low GAR group, the high GAR group had significantly higher incidence of ACM (6.5% vs. 1.7%, p < 0.001); CM (4.9% vs. 1.2%, p < 0.001), MACE (10.5% vs. 6.7%, p < 0.001), and MACCE (11.3% vs. 7.5%, p < 0.001). Cox regression analysis showed the patients in the high GAR group had a 1.62-fold increased risk for ACM (HR = 2.622, 95% CI: 2.130-3.228, p < 0.01), a 1.782-fold increased risk for CM (HR = 2.782, 95% CI: 2.180-3.550, p < 0.01). There was a 37.2% increased risk for MACE (HR = 1.372, 95% CI: 1.204-1.564, p < 0.01), and 32.4% increased risk for MACCE (HR = 1.324, 95% CI: 1.169-1.500, p < 0.01), compared to the patients in the low GAR group. Conclusions: The present study suggested that post-PCI CAD patients with higher GAR presented significantly increased mortality and adverse events GAR level at admission may 296 be considered as part of risk stratification when PCI is possible in patients with coronary heart disease. Clinical Trial Registration: The detailed information of the PRACTICE study has been registered on http://Clinicaltrials.gov (Identifier: NCT05174143).
RESUMO
BACKGROUND: Coronary artery disease (CAD) is a multi-factor complex trait and is heritable, especially in early-onset families. However, the genetic factors affecting the susceptibility of early-onset CAD are not fully characterized. METHODS: In the present study, we identified a rare nonsense variant in the CYP17A1 gene from a Chinese Han family with CAD. To validate the effect of this variation on atherosclerosis and early-onset coronary artery disease, we conducted studies on population, cells, and mice. RESULTS: The mutation precisely congregated with the clinical syndrome in all the affected family members and was absent in unaffected family members and unrelated controls. Similar to the human phenotype, the CYP17A1-deficient mice present the phenotype of metabolic syndrome with hypertension, increased serum glucose concentration, and presentation of central obesity and fatty liver. Furthermore, CYP17A1 knockout mice or CYP17A1 + ApoE double knockout mice developed more atherosclerotic lesions than wild type (WT) with high fat diary. In cell models, CYP17A1 was found to be involved in glucose metabolism by increasing glucose intake and utilization, through activating IGF1/mTOR/HIF1-α signaling way, which was consistent in CYP17A1 knockout mice with impaired glucose tolerance and insulin resistance. CONCLUSIONS: Through our study of cells, mice and humans, we identified CYP17A1 as a key protein participating in the pathophysiology of the atherosclerotic process and the possible mechanism of CYP17A1 C987X mutation induced atherosclerosis and early-onset CAD involving glucose homeostasis regulation was revealed. Video Abstract.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Animais , Humanos , Camundongos , Aterosclerose/genética , Doença da Artéria Coronariana/genética , Camundongos Knockout , Camundongos Knockout para ApoE , Transdução de Sinais , Esteroide 17-alfa-Hidroxilase/genéticaRESUMO
BACKGROUND: Current critical care pharmacist (CCP) practices and perceptions related to neuromuscular infusion (NMBI) use for acute respiratory distress syndrome (ARDS) maybe different with the COVID-19 pandemic and the publication of 2020 NMBI practice guidelines. OBJECTIVE: To evaluate CCP practices and perceptions regarding NMBI use for patients with moderate-severe ARDS. METHODS: We developed, tested, and electronically administered a questionnaire (7 parent-, 42 sub-questions) to 409 American College of Clinical Pharmacy (ACCP) Critical Care Practice and Research Network members in 12 geographically diverse states. The questionnaire focused on adults with moderate-severe ARDS (PaO2:FiO2<150) whose causes of dyssynchrony were addressed. Two reminders were sent at 10-day intervals. RESULTS: Respondents [131/409 (32%)] primarily worked in a medical intensive care unit (ICU) 102 (78%). Compared to COVID-negative(-) ARDS patients, COVID positive(+) ARDS patients were twice as likely to receive a NMBI (34 ± 18 vs.16 ± 17%; P < 0.01). Respondents somewhat/strongly agreed a NMBI should be reserved until after trials of deep sedation (112, 86%) or proning (92, 81%) and that NMBI reduced barotrauma (88, 67%), dyssynchrony (87, 66%), and plateau pressure (79, 60%). Few respondents somewhat/strongly agreed that a NMBI should be initiated at ARDS onset (23, 18%) or that NMBI reduced 90-day mortality (12, 10%). Only 2/14 potential NMBI risks [paralysis awareness (101, 82%) and prolonged muscle weakness (84, 68%)] were frequently reported to be of high/very high concern. Multiple NMBI titration targets were assessed as very/extremely important including arterial pH (109, 88%), dyssynchrony (107, 86%), and PaO2: FiO2 ratio (82, 66%). Train-of-four (55, 44%) and BIS monitoring (36, 29%) were deemed less important. Preferred NMBI discontinuation criteria included absence of dysschrony (84, 69%) and use ≥48 hour (72, 59%). CONCLUSIONS AND RELEVANCE: Current critical care pharmacists believe NMBI for ARDS patients are best reserved until after trials of deep sedation or proning; unique considerations exist in COVID+ patients. Our results should be considered when ICU NMBI protocols are being developed and bedside decisions regarding NMBI use in ARDS are being formulated.
Assuntos
COVID-19 , Bloqueadores Neuromusculares , Síndrome do Desconforto Respiratório , Adulto , Humanos , Farmacêuticos , Pandemias , Cuidados Críticos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Bloqueadores Neuromusculares/uso terapêutico , Respiração ArtificialRESUMO
BACKGROUND: Intensive care unit-acquired weakness (ICU-AW) is a prevalent and severe issue among ICU patients. Resistance training and beta-hydroxy-beta-methylbutyrate (HMB) intervention have demonstrated the potential to enhance muscle function in patients with sarcopenia and in older adults. The purpose of this study was to determine whether resistance training and/or HMB administration would improve physical function, muscle strength, and quality of life in medical ICU patients. METHODS: In this multicentre, four-arm, single-blind randomised control trial, a total of 112 adult patients with internal medical diagnoses admitted to the ICU were enrolled. These participants were then randomly assigned to one of four treatment groups: the resistance training group received protocol-based multilevel resistance exercise, the HMB group received 3 g/day of HMBCa, combination group and control groups received standard care, from the ICU to the general ward until discharge. The primary outcomes assessed at discharge included six-minute walking distance (6MWD) and short physical performance battery (SPPB). Secondary outcomes measured included muscle mass, MRC score, grip strength, and health reports quality of life at different time points. Data analysis was performed using a generalised linear mixed model, adhering to the principles of intention-to-treat analysis. RESULTS: Resistance training and combination treatment groups exhibited significant increases in SPPB scores (3.848 and 2.832 points, respectively) compared to the control group and substantial improvements in 6WMD (99.768 and 88.577 m, respectively) (all with P < 0.01). However, no significant changes were observed in the HMB group. Muscle strength, as indicated by MRC and grip strength tests conducted at both ICU and hospital discharge, showed statistically significant improvements in the resistance training and combination groups (P < 0.05). Nevertheless, no significant differences were found between the treatment groups and usual care in terms of 60-day mortality, prevalence of ICU-AW, muscle mass, quality of life, or other functional aspects. CONCLUSIONS: Resistance training with or without beta-hydroxy-beta-methylbutyrate during the entire hospitalisation intervention improves physical function and muscle strength in medical ICU patients, but muscle mass, quality of life, and 60-day mortality were unaffected. TRIAL REGISTRATION: ChiCTR2200057685 was registered on March 15th, 2022.