Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202573

RESUMO

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Assuntos
Cromatina , Proteínas de Drosophila , Ilhas de CpG , Proteínas de Drosophila/metabolismo , Código das Histonas , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas
2.
Mol Cell ; 81(1): 49-66.e8, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33242393

RESUMO

Breathing depends on pulmonary surfactant, a mixture of phospholipids and proteins, secreted by alveolar type II cells. Surfactant requires lamellar bodies (LBs), organelles containing densely packed concentric membrane layers, for storage and secretion. LB biogenesis remains mysterious but requires surfactant protein B (SP-B), which is synthesized as a precursor (pre-proSP-B) that is cleaved during trafficking into three related proteins. Here, we elucidate the functions and cooperation of these proteins in LB formation. We show that the N-terminal domain of proSP-B is a phospholipid-binding and -transfer protein whose activities are required for proSP-B export from the endoplasmic reticulum (ER) and sorting to LBs, the conversion of proSP-B into lipoprotein particles, and neonatal viability in mice. The C-terminal domain facilitates ER export of proSP-B. The mature middle domain, generated after proteolytic cleavage of proSP-B, generates the striking membrane layers characteristic of LBs. Together, our results lead to a mechanistic model of LB biogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Lipoproteínas/metabolismo , Complexos Multiproteicos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Lipoproteínas/química , Camundongos , Complexos Multiproteicos/química , Domínios Proteicos , Proteína B Associada a Surfactante Pulmonar/química
3.
Nature ; 607(7918): 374-380, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768507

RESUMO

Peroxisomes are ubiquitous organelles that house various metabolic reactions and are essential for human health1-4. Luminal peroxisomal proteins are imported from the cytosol by mobile receptors, which then recycle back to the cytosol by a poorly understood process1-4. Recycling requires receptor modification by a membrane-embedded ubiquitin ligase complex comprising three RING finger domain-containing proteins (Pex2, Pex10 and Pex12)5,6. Here we report a cryo-electron microscopy structure of the ligase complex, which together with biochemical and in vivo experiments reveals its function as a retrotranslocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that co-assemble into an open channel. The three ring finger domains form a cytosolic tower, with ring finger 2 (RF2) positioned above the channel pore. We propose that the N terminus of a recycling receptor is inserted from the peroxisomal lumen into the pore and monoubiquitylated by RF2 to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitylated by the concerted action of RF10 and RF12 and degraded. This polyubiquitylation pathway also maintains the homeostasis of other peroxisomal import factors. Our results clarify a crucial step during peroxisomal protein import and reveal why mutations in the ligase complex cause human disease.


Assuntos
Microscopia Crioeletrônica , Peroxissomos , Complexos Ubiquitina-Proteína Ligase , Citosol/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Peroxinas/química , Peroxinas/metabolismo , Peroxinas/ultraestrutura , Fator 2 da Biogênese de Peroxissomos/química , Fator 2 da Biogênese de Peroxissomos/metabolismo , Fator 2 da Biogênese de Peroxissomos/ultraestrutura , Peroxissomos/enzimologia , Peroxissomos/ultraestrutura , Poliubiquitina , Transporte Proteico , Domínios RING Finger , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Complexos Ubiquitina-Proteína Ligase/ultraestrutura
4.
Genes Dev ; 33(9-10): 536-549, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30842217

RESUMO

The exosome functions in the degradation of diverse RNA species, yet how it is negatively regulated remains largely unknown. Here, we show that NRDE2 forms a 1:1 complex with MTR4, a nuclear exosome cofactor critical for exosome recruitment, via a conserved MTR4-interacting domain (MID). Unexpectedly, NRDE2 mainly localizes in nuclear speckles, where it inhibits MTR4 recruitment and RNA degradation, and thereby ensures efficient mRNA nuclear export. Structural and biochemical data revealed that NRDE2 interacts with MTR4's key residues, locks MTR4 in a closed conformation, and inhibits MTR4 interaction with the exosome as well as proteins important for MTR4 recruitment, such as the cap-binding complex (CBC) and ZFC3H1. Functionally, MID deletion results in the loss of self-renewal of mouse embryonic stem cells. Together, our data pinpoint NRDE2 as a nuclear exosome negative regulator that ensures mRNA stability and nuclear export.


Assuntos
Exossomos/genética , Exossomos/metabolismo , Proteínas Nucleares/fisiologia , RNA Helicases/metabolismo , Animais , Núcleo Celular/metabolismo , Células-Tronco Embrionárias , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genética , Estabilidade de RNA/genética
5.
Nature ; 566(7742): 136-139, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30644436

RESUMO

Many proteins must translocate through the protein-conducting Sec61 channel in the eukaryotic endoplasmic reticulum membrane or the SecY channel in the prokaryotic plasma membrane1,2. Proteins with highly hydrophobic signal sequences are first recognized by the signal recognition particle (SRP)3,4 and then moved co-translationally through the Sec61 or SecY channel by the associated translating ribosome. Substrates with less hydrophobic signal sequences bypass the SRP and are moved through the channel post-translationally5,6. In eukaryotic cells, post-translational translocation is mediated by the association of the Sec61 channel with another membrane protein complex, the Sec62-Sec63 complex7-9, and substrates are moved through the channel by the luminal BiP ATPase9. How the Sec62-Sec63 complex activates the Sec61 channel for post-translational translocation is not known. Here we report the electron cryo-microscopy structure of the Sec complex from Saccharomyces cerevisiae, consisting of the Sec61 channel and the Sec62, Sec63, Sec71 and Sec72 proteins. Sec63 causes wide opening of the lateral gate of the Sec61 channel, priming it for the passage of low-hydrophobicity signal sequences into the lipid phase, without displacing the channel's plug domain. Lateral channel opening is triggered by Sec63 interacting both with cytosolic loops in the C-terminal half of Sec61 and transmembrane segments in the N-terminal half of the Sec61 channel. The cytosolic Brl domain of Sec63 blocks ribosome binding to the channel and recruits Sec71 and Sec72, positioning them for the capture of polypeptides associated with cytosolic Hsp7010. Our structure shows how the Sec61 channel is activated for post-translational protein translocation.


Assuntos
Retículo Endoplasmático/química , Processamento de Proteína Pós-Traducional , Canais de Translocação SEC/química , Canais de Translocação SEC/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/ultraestrutura , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/ultraestrutura , Modelos Moleculares , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 299(8): 105071, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474102

RESUMO

Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Paraspeckles , RNA Longo não Codificante , Humanos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Hipóxia , Paraspeckles/metabolismo , RNA Longo não Codificante/genética , Ativação Transcricional , Regulação para Cima
7.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701635

RESUMO

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

8.
Development ; 148(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35020876

RESUMO

The production and expansion of intermediate progenitors (IPs) are essential for neocortical neurogenesis during development and over evolution. Here, we have characterized an epigenetic circuit that precisely controls neurogenic programs, particularly properties of IPs, during neocortical development. The circuit comprises a long non-coding RNA (LncBAR) and the BAF (SWI/SNF) chromatin-remodeling complex, which transcriptionally maintains the expression of Zbtb20. LncBAR knockout neocortex contains more deep-layer but fewer upper-layer projection neurons. Intriguingly, loss of LncBAR promotes IP production, but paradoxically prolongs the duration of the cell cycle of IPs during mid-later neocortical neurogenesis. Moreover, in LncBAR knockout mice, depletion of the neural progenitor pool at embryonic stage results in fewer adult neural progenitor cells in the subventricular zone of lateral ventricles, leading to a failure in adult neurogenesis to replenish the olfactory bulb. LncBAR binds to BRG1, the core enzymatic component of the BAF chromatin-remodeling complex. LncBAR depletion enhances association of BRG1 with the genomic locus of, and suppresses the expression of, Zbtb20, a transcription factor gene known to regulate both embryonic and adult neurogenesis. ZBTB20 overexpression in LncBAR-knockout neural precursors reverses compromised cell cycle progressions of IPs.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Neurogênese/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Animais , Ciclo Celular/genética , Desenvolvimento Embrionário/genética , Epigênese Genética/genética , Camundongos , Camundongos Knockout , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
9.
Small ; : e2402173, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113337

RESUMO

Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3',5,5'-tetraethyl-4,4'-bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young-Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young-Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF' pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.

10.
J Transl Med ; 22(1): 490, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790013

RESUMO

N6-methyladenosine (m6A) stands as the most prevalent modified form of RNA in eukaryotes, pivotal in various biological processes such as regulating RNA stability, translation, and transcription. All members within the YT521-B homology (YTH) gene family are categorized as m6A reading proteins, capable of identifying and binding m6A modifications on RNA, thereby regulating RNA metabolism and functioning across diverse physiological processes. YTH domain-containing 2 (YTHDC2), identified as the latest member of the YTH family, has only recently started to emerge for its biological function. Numerous studies have underscored the significance of YTHDC2 in human physiology, highlighting its involvement in both tumor progression and non-tumor diseases. Consequently, this review aims to further elucidate the pathological mechanisms of YTHDC2 by summarizing its functions and roles in tumors and other diseases, with a particular focus on its downstream molecular targets and signaling pathways.


Assuntos
Adenosina , Neoplasias , Proteínas de Ligação a RNA , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas de Ligação a RNA/metabolismo , Animais , Doença , Transdução de Sinais , RNA Helicases
11.
Scand J Gastroenterol ; 59(2): 133-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37752679

RESUMO

BACKGROUND: Gastrointestinal motility disorders tend to develop after pancreaticoduodenectomy (PD). The objectives of this study were: (1) to investigate the impact of needleless transcutaneous neuromodulation (TN) on the postoperative recuperation following pancreaticoduodenectomy (PD), and (2) to explore the underlying mechanisms by which TN facilitates the recovery of gastrointestinal function after PD. METHODS: A total of 41 patients scheduled for PD were randomized into two groups: the TN group (n = 21) and the Sham-TN group (n = 20). TN was performed at acupoints ST-36 and PC-6 twice daily for 1 h from the postoperative day 1 (POD1) to day 7. Sham-TN was performed at non-acupoints. Subsequent assessments incorporated both heart rate variation and dynamic electrogastrography to quantify alterations in vagal activity (HF) and gastric pacing activity. RESULTS: 1)TN significantly decreased the duration of the first passage of flatus (p < 0.001) and defecation (p < 0.01) as well as the time required to resume diet (p < 0.001) when compared to sham-TN;2)Compared with sham-TN, TN increased the proportion of regular gastric pacing activity (p < 0.01);3) From POD1 to POD7, there was a discernible augmentation in HF induced by TN stimulation(p < 0.01);4) TN significantly decreased serum IL-6 levels from POD1 to POD7 (p < 0.001);5) TN was an independent predictor of shortened hospital stay(ß = - 0.349, p = 0.035). CONCLUSION: Needleless TN accelerates the recovery of gastrointestinal function and reduces the risk of delayed gastric emptying in patients after PD by enhancing vagal activity and controlling the inflammatory response.


Assuntos
Pancreaticoduodenectomia , Estômago , Humanos , Pancreaticoduodenectomia/efeitos adversos , Tempo de Internação , Esvaziamento Gástrico , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia
12.
Inorg Chem ; 63(2): 1378-1387, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38164710

RESUMO

The zero-valent iron (ZVI) has attracted increasing attention due to the enhanced reactivity of ZVI to uranium wastewater. However, ZVI practical application is hampered due to its susceptibility to oxidation and the formation of passivation layers during storage and in situ restoration. To address these issues, we used a biosulfuration approach to modify ZVI for application in uranium ore wastewater treatment. A series of physicochemical characterization tools and photoelectronic analyses showed that BS-ZVI considerably increased carrier separation efficiency and visible light absorption capacity, resulting in a significant photoassisted enhancement effect on uranium extraction. Accordingly, the uranium removal efficiency of BS-ZVI reached 91% within 60 min, and its maximum adsorption capacity was 336.3 mg/g. By analyzing the mechanism, the improved U(VI) removal performance was mostly responsible on the dissolution of the passivation layer on the surface of ZVI, the generation of Fe(II) and FeS, and the important role of Shewanella putrefaciens extracellular polymers (EPS). Overall, the BS-ZVI biohybrid merges with the high activity of ZVI, bio-FeS, and self-regeneration ability of bacteria, expanding a promising new approach for sustainable treatment of uranium mine wastewater.

13.
Bioorg Chem ; 153: 107785, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39255609

RESUMO

Invasive fungal infections have high morbidity and mortality rates and have become one of the most serious threats to human health. In the present study, a series of triazole antifungal derivatives with phenylthiophene backbone were obtained by structural modification of the lead compound using Iodiconazole as the lead compound. Among them, compound 19g is a triazole antifungal compound with 4-chloro-2-fluoro phenylthiophene backbone, which showed optimal antifungal activity against Candida albicans, Cryptococcus neoformans, and Aspergillus, with a MIC80 value of 0.0625 µg/mL. In addition, compounds 19e, 19f, 19g, 19h, 19i and 19k exhibited different levels of inhibitory activity against fluconazole-resistant strains with MIC80 values ranging from 0.0625 µg/mL to 32 µg/mL. Since compound 19g had optimal in vitro antifungal activity, we selected 19g for human liver microsomal stability and CYP enzyme inhibition assays as well as further evaluated the inhibitory activity of compound 19g on normal and cancerous cells in humans. Finally, we verified the inhibitory effect of compound 19g on the filamentation of Candida albicans and determined the mechanism of action by sterol composition analysis.

14.
World J Surg ; 48(1): 86-96, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38686746

RESUMO

BACKGROUND: Low-grade appendiceal mucinous neoplasms (LAMN) are very rare, accounting for approximately 0.2%-0.5% of gastrointestinal tumors. We conducted a multicenter retrospective study to explore the impact of different surgical procedures combined with HIPEC on the short-term outcomes and long-term survival of patients. METHODS: We retrospectively analyzed the clinicopathological data of 91 LAMN perforation patients from 9 teaching hospitals over a 10-year period, and divided them into HIPEC group and non-HIPEC group based on whether or not underwent HIPEC. RESULTS: Of the 91 patients with LAMN, 52 were in the HIPEC group and 39 in the non-HIPEC group. The Kaplan-Meier method predicted that 52 patients in the HIPEC group had 5- and 10-year overall survival rates of 82.7% and 76.9%, respectively, compared with predicted survival rates of 51.3% and 46.2% for the 39 patients in the non-HIPEC group, with a statistically significant difference between the two groups (χ2 = 10.622, p = 0.001; χ2 = 10.995, p = 0.001). Compared to the 5-year and 10-year relapse-free survival rates of 75.0% and 65.4% in the HIPEC group, respectively, the 5-year and 10-year relapse-free survival rates of 48.7% and 46.2% in the non-HIPEC group were significant different between the two outcomes (χ2 = 8.063, p = 0.005; χ2 = 6.775, p = 0.009). The incidence of postoperative electrolyte disturbances and hypoalbuminemia was significantly higher in the HIPEC group than in the non-HIPEC group (p = 0.023; p = 0.044). CONCLUSIONS: This study shows that surgery combined with HIPEC can significantly improve 5-year and 10-year overall survival rates and relapse-free survival rates of LAMN perforation patients, without affecting their short-term clinical outcomes.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias do Apêndice , Quimioterapia Intraperitoneal Hipertérmica , Humanos , Estudos Retrospectivos , Masculino , Feminino , Neoplasias do Apêndice/terapia , Neoplasias do Apêndice/mortalidade , Neoplasias do Apêndice/patologia , Pessoa de Meia-Idade , Adulto , Adenocarcinoma Mucinoso/terapia , Adenocarcinoma Mucinoso/mortalidade , Adenocarcinoma Mucinoso/patologia , Idoso , Terapia Combinada , Resultado do Tratamento , Taxa de Sobrevida , Gradação de Tumores , Perfuração Intestinal/etiologia , Neoplasias Peritoneais/terapia , Neoplasias Peritoneais/mortalidade
15.
J Nanobiotechnology ; 22(1): 468, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103846

RESUMO

Ulcerative colitis (UC) is a challenging inflammatory gastrointestinal disorder, whose therapies encounter limitations in overcoming insufficient colonic retention and rapid systemic clearance. In this study, we report an innovative polymeric prodrug nanoformulation for targeted UC treatment through sustained 5-aminosalicylic acid (5-ASA) delivery. Amphiphilic polymer-based 13.5 nm micelles were engineered to incorporate azo-linked 5-ASA prodrug motifs, enabling cleavage via colonic azoreductases. In vitro, micelles exhibited excellent stability under gastric/intestinal conditions while demonstrating controlled 5-ASA release over 24 h in colonic fluids. Orally administered micelles revealed prolonged 24-h retention and a high accumulation within inflamed murine colonic tissue. At an approximately 60% dose reduction from those most advanced recent studies, the platform halted DSS colitis progression and outperformed standard 5-ASA therapy through a 77-97% suppression of inflammatory markers. Histological analysis confirmed intact colon morphology and restored barrier protein expression. This integrated prodrug nanoformulation addresses limitations in colon-targeted UC therapy through localized bioactivation and tailored pharmacokinetics, suggesting the potential of nanotechnology-guided precision delivery to transform disease management.


Assuntos
Colite , Colo , Preparações de Ação Retardada , Mesalamina , Micelas , Nitrorredutases , Polímeros , Pró-Fármacos , Animais , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Mesalamina/química , Mesalamina/farmacocinética , Nitrorredutases/metabolismo , Camundongos , Colo/metabolismo , Colo/patologia , Polímeros/química , Colite/tratamento farmacológico , Colite/metabolismo , Preparações de Ação Retardada/química , NADH NADPH Oxirredutases/metabolismo , Camundongos Endogâmicos C57BL , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Masculino
16.
BMC Anesthesiol ; 24(1): 185, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789968

RESUMO

BACKGROUND: Despite the implementation of various postoperative management strategies, the prevalence of postoperative fatigue syndrome (POFS) remains considerable among individuals undergoing laparoscopic radical gastrectomy. While the N-methyl-D-aspartic acid receptor antagonist esketamine has demonstrated efficacy in enhancing sleep quality and alleviating postoperative pain, its impact on POFS remains uncertain. Consequently, the objective of this study is to ascertain whether perioperative administration of esketamine can effectively mitigate the occurrence of POFS in patients undergoing laparoscopic radical gastrectomy. METHODS: A total of 133 patients diagnosed with gastric cancer were randomly assigned to two groups, namely the control group (Group C) (n = 66) and the esketamine group (Group E) (n = 67), using a double-blind method. The Group C received standardized anesthesia, while the Group E received esketamine in addition to the standardized anesthesia. The primary outcome measure assessed was the Christensen fatigue score at 3 days after the surgical procedure, while the secondary outcomes included the disparities in postoperative fatigue, postoperative pain, sleep quality, and adverse reactions between the two groups. RESULTS: In the group receiving esketamine, the fatigue scores of Christensen on the third day after surgery were significantly lower compared to the Group C (estimated difference, -0.70; 95% CI, -1.37 to -0.03; P = 0.040). Additionally, there was a significant decrease in the occurrence of fatigue in the Group E compared to the Group C on the first and third days following surgery (P < 0.05). Also, compared to individuals who had distal gastrectomy, those who had entire gastrectomy demonstrated a higher degree of postoperative tiredness reduction with esketamine. Furthermore, the Group E exhibited reduced postoperative pain and improved sleep in comparison to the Group C. Both groups experienced similar rates of adverse events. CONCLUSIONS: The use of esketamine during the perioperative period can improve POFS after laparoscopic radical gastrectomy, without adverse reactions. TRIAL REGISTRATION: Registered in the Chinese Clinical Trial Registry (ChiCTR2300072167) on 05/06 /2023.


Assuntos
Gastrectomia , Ketamina , Laparoscopia , Dor Pós-Operatória , Complicações Pós-Operatórias , Neoplasias Gástricas , Humanos , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Neoplasias Gástricas/cirurgia , Masculino , Feminino , Método Duplo-Cego , Laparoscopia/métodos , Pessoa de Meia-Idade , Gastrectomia/métodos , Complicações Pós-Operatórias/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Fadiga/prevenção & controle , Idoso
17.
Mar Drugs ; 22(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393040

RESUMO

In this study, an actinomycete was isolated from sea mud. The strain K1 was identified as Saccharomonospora sp. by 16S rDNA. The optimal enzyme production temperature, initial pH, time, and concentration of the inducer of this actinomycete strain K1 were 37 °C, pH 8.5, 72 h, and 2% dextran T20 of medium, respectively. Dextranase from strain K1 exhibited maximum activity at 8.5 pH and 50 °C. The molecular weight of the enzyme was <10 kDa. The metal ions Sr2+ and K+ enhanced its activity, whereas Fe3+ and Co2+ had an opposite effect. In addition, high-performance liquid chromatography showed that dextran was mainly hydrolyzed to isomaltoheptose and isomaltopentaose. Also, it could effectively remove biofilms of Streptococcus mutans. Furthermore, it could be used to prepare porous sweet potato starch. This is the first time a dextranase-producing actinomycete strain was screened from marine samples.


Assuntos
Actinobacteria , Dextranos , Dextranos/química , Dextranase/química , Concentração de Íons de Hidrogênio , Biofilmes
18.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620716

RESUMO

We describe a general method that allows structure determination of small proteins by single-particle cryo-electron microscopy (cryo-EM). The method is based on the availability of a target-binding nanobody, which is then rigidly attached to two scaffolds: 1) a Fab fragment of an antibody directed against the nanobody and 2) a nanobody-binding protein A fragment fused to maltose binding protein and Fab-binding domains. The overall ensemble of ∼120 kDa, called Legobody, does not perturb the nanobody-target interaction, is easily recognizable in EM images due to its unique shape, and facilitates particle alignment in cryo-EM image processing. The utility of the method is demonstrated for the KDEL receptor, a 23-kDa membrane protein, resulting in a map at 3.2-Šoverall resolution with density sufficient for de novo model building, and for the 22-kDa receptor-binding domain (RBD) of SARS-CoV-2 spike protein, resulting in a map at 3.6-Šresolution that allows analysis of the binding interface to the nanobody. The Legobody approach thus overcomes the current size limitations of cryo-EM analysis.


Assuntos
Microscopia Crioeletrônica/métodos , SARS-CoV-2/metabolismo , Anticorpos de Domínio Único/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação/imunologia , COVID-19/virologia , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura
19.
J Environ Manage ; 370: 122444, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278021

RESUMO

The livestock sector represents major challenges to safeguarding environmental integrity. This study comprehensively analyzes ten environmental footprints of the livestock sector from 1995 to 2022, with projections until 2030, and juxtaposes them with the planetary boundaries. We quantify greenhouse gas emissions, land use, water use, particulate matter formation, and biochemical flows associated with the livestock sector. Our findings indicate that the livestock sector alone poses a significant challenge to planetary boundaries and has the potential to threaten several of these boundaries by 2030. Scenario modeling shows that a "one-size-fits-all" strategy for all countries can be suboptimal. Conversely, a region-specific strategy that requires developed regions to align meat consumption with the Eat-Lancet diet while developing regions focus on improvement of production efficiency is optimal for reducing livestock's global environmental footprints. These findings highlight the need for targeted policy measures and regional strategies to effectively mitigate the environmental impacts of the livestock sector and ensure sustainable practices.

20.
Yi Chuan ; 46(4): 279-289, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632091

RESUMO

H2A.Z, one of the most well-known variants of histone H2A, has been extensively investigated on its dual roles in gene transcription in recent years. In this review, we focus on the intricate involvement of H2A.Z in transcriptional regulation, including the assembly of distinct H2A.Z subtypes, post-translational modifications and genomic distributions. Emphasis is placed on the biological and pathophysiological implications, particularly in tumorigenesis and nervous system development. We summarize the dynamic regulatory mechanisms governing H2A.Z deposition or eviction on chromatin to provide insights for understanding the diversity of histone variants and promoting the search of new targets in concerned disease diagnosis and treatment.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Cromatina , Regulação da Expressão Gênica , Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa