Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 52(10): 5529-5548, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38512058

RESUMO

The process of induced pluripotent stem cells (iPSCs) reprogramming involves several crucial events, including the mesenchymal-epithelial transition (MET), activation of pluripotent genes, metabolic reprogramming, and epigenetic rewiring. Although these events intricately interact and influence each other, the specific element that regulates the reprogramming network remains unclear. Dux, a factor known to promote totipotency during the transition from embryonic stem cells (ESC) to 2C-like ESC (2CLC), has not been extensively studied in the context of iPSC reprogramming. In this study, we demonstrate that the modification of H3K18la induced by Dux overexpression controls the metabolism-H3K18la-MET network, enhancing the efficiency of iPSC reprogramming through a metabolic switch and the recruitment of p300 via its C-terminal domain. Furthermore, our proteomic analysis of H3K18la immunoprecipitation experiment uncovers the specific recruitment of Brg1 during reprogramming, with both H3K18la and Brg1 being enriched on the promoters of genes associated with pluripotency and epithelial junction. In summary, our study has demonstrated the significant role of Dux-induced H3K18la in the early reprogramming process, highlighting its function as a potent trigger. Additionally, our research has revealed, for the first time, the binding of Brg1 to H3K18la, indicating its role as a reader of histone lactylation.


Assuntos
Reprogramação Celular , Transição Epitelial-Mesenquimal , Histonas , Proteínas de Homeodomínio , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Animais , Humanos , Camundongos , Reprogramação Celular/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Transição Epitelial-Mesenquimal/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Basic Res Cardiol ; 119(1): 151-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145999

RESUMO

A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Camundongos , Animais , Gravidez , Feminino , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
3.
Sensors (Basel) ; 22(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808333

RESUMO

The use of fiber Bragg grating (FBG) sensors is proposed to solve the technical problem of poor sensor stability in the long-term safety monitoring of shaft lining structures. The auxiliary shaft of the Zhuxianzhuang coal mine was considered as the engineering background, and a test system implementing FBG sensors was established to monitor the long-term safety of the shaft lining structure. Indoor simulation testing revealed that the coefficient of determination (r2) between the test curves of the FBG sensor and the resistance strain gauge is greater than 0.99 in both the transverse and vertical strains. Therefore, the FBG sensor and resistance strain gauge test values are similar, and the error is small. The early warning value was obtained by calculation, according to the specific engineering geological conditions and shaft lining structure. The monitoring data obtained for the shaft lining at three test levels over more than three years reveal that the measured vertical strain value is less than the warning value, indicating that the shaft lining structure is currently in a safe state. The analysis of the monitoring data reveals that the vertical strain increment caused by the vertical additional force is approximately 0.0752 µÎµ/d. As the mine drainage progresses, the increasing vertical additional force acting on the shaft lining will compromise the safety of the shaft lining structure. Therefore, the monitoring must be enhanced to facilitate decision-making for safe shaft operation.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Monitorização Fisiológica
4.
Biol Reprod ; 105(5): 1089-1103, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34296246

RESUMO

Two-cell-like (2C-like) embryonic stem cells (ESCs) are a small group of ESCs that spontaneously express zygotic genome activation (ZGA) genes and repeats, such as Zscan4 and murine endogenous retrovirus with leucine (MERVL), and are specifically expressed in 2-cell-stage mouse embryos. Although numerous types of treatment and agents elevate the transition of ESCs to 2C-like ESCs, Dux serves as a critical factor in this transition by increasing the expression of Zscan4 and MERVL directly. However, the loss of Dux did not impair the birth of mice, suggesting that Dux may not be the primary transitioning factor in fertilized embryos. It has been reported that for 2-cell embryos derived from somatic cell nuclear transfer (SCNT) and whose expression of ZGA genes and repeats was aberrant, Dux improved the reprogramming efficiency by correcting aberrant H3K9ac modification via its C-terminal domain. We confirmed that the overexpression of full-length Dux mRNA in SCNT embryos improved the efficiency of preimplantation development (62.16% vs. 41.26% with respect to controls) and also increased the expression of Zscan4 and MERVL. Furthermore, we found that the N-terminal double homeodomains of Dux were indispensable for Dux localization and function. The intermediate region was essential for MERVL and Zscan4 activation, and the C-terminal domain was important for elevating level of H3K27ac. Mutant Dux mRNA containing N-terminal double homeodomains with the intermediate region or the C-terminal domain also improved the preimplantation development of SCNT embryos. This is the first report focusing on distinguishing functional domains of Dux in embryos derived from SCNT.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Proteínas de Homeodomínio/genética , Camundongos/embriologia , Técnicas de Transferência Nuclear , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Camundongos/genética , Domínios Proteicos/genética
5.
Stem Cells ; 38(8): 960-972, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346926

RESUMO

Aberrant epigenetic reprogramming is one of the major barriers for somatic cell reprogramming. Although our previous study has indicated that H3K27me3 demethylase KDM6A can improve the nuclear reprogramming efficiency, the mechanism remains unclear. In this study, we demonstrate that the overexpression of Kdm6a may improve induced pluripotent stem cell (iPSC) reprogramming efficiency in a demethylase enzymatic activity-dependent manner. KDM6A erased H3K27me3 on pluripotency- and metabolism-related genes, and consequently facilitated changing the gene expression profile and metabolic pattern to an intermediate state. Furthermore, KDM6A may promote IL-6 expression, and the secreted IL-6 may further improve iPSC reprogramming efficiency. In addition, KDM6A may promote PTEN expression to decrease p-AKT and p-mTOR levels, which in turn facilitates reprogramming. Overall, our results reveal that KDM6A may promote iPSC reprogramming efficiency by accelerating changes in the gene expression profile and the metabolic pattern in a demethylation-activity-dependent manner. These results may provide an insight into the relationship between epigenomics, transcriptomics, metabolomics, and reprogramming.


Assuntos
Histona Desmetilases/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Interleucina-6/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Reprogramação Celular/fisiologia , Epigênese Genética , Feminino , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Transdução de Sinais
6.
Dev Growth Differ ; 58(3): 270-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26991405

RESUMO

Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study.


Assuntos
Blastômeros/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Células-Tronco Embrionárias Murinas/metabolismo , Partenogênese/genética , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Blastômeros/citologia , Agregação Celular/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Feminino , Imunofluorescência , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 33(2): 382-7, 2016 Apr.
Artigo em Zh | MEDLINE | ID: mdl-29708710

RESUMO

A critical shortage of donor organs raises a question of needs for alternative organ sources for regenerative medicine.Over the last decade,three-dimensional(3D)culture has become a new approach for organ regeneration.The 3Dculture takes significant advantages of cells spatial relationships between multiple cellular types and surrounding matrices of dynamic cellular interactions,which plays a key role in structural self-formation of complex organ buds.Here we present major classic cases of 3Dculture organ regeneration to show how it works,and then we try to find the way of future organ regeneration.


Assuntos
Organogênese , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Humanos , Regeneração , Células-Tronco/citologia
8.
Reproduction ; 147(1): 65-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129153

RESUMO

Pig pluripotent cells may represent an advantageous experimental tool for developing therapeutic application in the human biomedical field. However, it has previously been proven to be difficult to establish from the early embryo and its pluripotency has not been distinctly documented. In recent years, induced pluripotent stem (iPS) cell technology provides a new method of reprogramming somatic cells to pluripotent state. The generation of iPS cells together with or without certain small molecules has become a routine technique. However, the generation of iPS cells from pig embryonic tissues using viral infections together with small molecules has not been reported. Here, we reported the generation of induced pig pluripotent cells (iPPCs) using the iPS technology in combination with valproic acid (VPA). VPA treatment significantly increased the expression of pluripotent genes and played an important role in early reprogramming. We showed that iPPCs resembled pig epiblast cells in their morphology and pluripotent markers, such as OCT4, NANOG, and SSEA1. It had a normal karyotype and could form embryoid bodies, which express three germ layer markers in vitro. In addition, the iPPCs might directly differentiate into neural progenitors after being induced with the retinoic acid and extracellular matrix. Our study established a reasonable method to generate pig pluripotent cells, which might be a new donor cell source for human neural disease therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Suínos , Porco Miniatura
9.
JHEP Rep ; 5(7): 100746, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37274776

RESUMO

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) affects nearly a quarter of the population with no approved pharmacological therapy. Liver steatosis is a primary characteristic of NAFLD. Recent studies suggest that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) may provide a promising strategy for treating liver injury; however, the role and underlying mechanisms of MSC-ex in steatosis are not fully understood. Methods: Oleic-palmitic acid-treated hepatic cells and high-fat diet (HFD)-induced NAFLD mice were established to observe the effect of MSC-ex. Using non-targeted lipidomics and transcriptome analyses, we analysed the gene pathways positively correlated with MSC-ex. Mass spectrometry and gene knockdown/overexpression analyses were performed to evaluate the effect of calcium/calmodulin-dependent protein kinase 1 (CAMKK1) transferred by MSC-ex on lipid homoeostasis regulation. Results: Here, we demonstrate that MSC-ex promote fatty acid oxidation and reduce lipogenesis in oleic-palmitic acid-treated hepatic cells and HFD-induced NAFLD mice. Non-targeted lipidomics and transcriptome analyses suggested that the effect of MSC-ex on lipid accumulation positively correlated with the phosphorylation of AMP-activated protein kinase. Furthermore, mass spectrometry and gene knockdown/overexpression analyses revealed that MSC-ex-transferred CAMKK1 is responsible for ameliorating lipid accumulation in an AMP-activated protein kinase-dependent manner, which subsequently inhibits SREBP-1C-mediated fatty acid synthesis and enhances peroxisome proliferator-activated receptor alpha (PPARα)-mediated fatty acid oxidation. Conclusions: MSC-ex may prevent HFD-induced NAFLD via CAMKK1-mediated lipid homoeostasis regulation. Impact and Implications: NAFLD includes many conditions, from simple steatosis to non-alcoholic steatohepatitis, which can lead to fibrosis, cirrhosis, and even hepatocellular carcinoma. So far, there is no approved drug for treating liver steatosis of NAFLD. Thus, better therapies are needed to regulate lipid metabolism and prevent the progression from liver steatosis to chronic liver disease. By using a combination of non-targeted lipidomic and transcriptome analyses, we revealed that human umbilical cord mesenchymal stem cell-derived exosomes (MSC-ex) effectively reduced lipid deposition and improved liver function from HFD-induced liver steatosis. Our study highlights the importance of exosomal CAMKK1 from MSC-ex in mediating lipid metabolism regulation via AMPK-mediated PPARα/CPT-1A and SREBP-1C/fatty acid synthase signalling in hepatocytes. These findings are significant in elucidating novel mechanisms related to MSC-ex-based therapies for preventing NAFLD.

10.
Dev Growth Differ ; 54(4): 481-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22435468

RESUMO

Parthenogenetic embryonic stem cells (PgES) might advance cell replacement therapies and provide a valuable in vitro model system to study the genomic imprinting. However, the differential potential of PgES cells was limited. It could result from relative low heterology of PgES cells compared with ES cells from fertilization (fES), which produce different expression of most imprinted genes. Here, we described the establishment of PgES cells by aggregating parthenogenetic embryos at the 8-cell stage (aPgES cells), which may increase heterozygy. We found that derivation of aPgES cells in association with an increased number of inner cell mass cells by aggregating was more efficient than that of PgES cells from a single parthenogenetic blastocyst. The aPgES cells have normal karyotype, stain positive for alkaline phosphatase, express high levels of ES cell markers and can differentiate into teratomas composed of the three germ layers. Moreover, compared with PgES cells, the more highly upregulated paternally expressed imprinted genes were observed in aPgES cells, the same change was not shown in aPg blastocysts. This suggested that the aggregation induced effect could modify the expression of paternally expressed imprinted genes. Our studies showed that aPgES cells, the expression of imprinted genes in which more closely resemble fES cells than PgES cells, would contribute to all organs and avoiding immuno-rejection, which may provide invaluable material for regeneration medicine.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Partenogênese , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Blastocisto/metabolismo , Contagem de Células , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Cariótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/citologia , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Injeções de Esperma Intracitoplásmicas , Teratoma/metabolismo , Teratoma/patologia , Ativação Transcricional
11.
Yi Chuan ; 33(11): 1231-8, 2011 Nov.
Artigo em Zh | MEDLINE | ID: mdl-22120079

RESUMO

In this study, we generated embryonic stem cells from parthenogenetic embryos (PESCs), and induced them to differentiate to motor neurons, which could be an alternative source of histocompatible cells for replacement of therapy and theoretical foundation for studying the relationship of genome imprint and neural differentiation. The parthenogenetic activation rate of B6D2F1 mouse oocytes was 93.26%. We established eight parthenogenetic embryonic stem cell lines and the establishment rate from parthenogenetic embryos was 23.53%. The pluripotency marker Oct4, the cell surface marker SSEA-1, and alkaline phosphatase exhibited in PESCs. Karyotype analysis showed normal 40 chromosomes when examined at passages 10 and 30, which was in accordance with their oocyte origins. Three germinal layers were differentiated in vivo and in vitro. Mouse PESCs, which were treated by tretinoin and sonic hedgehog with extracellular matrix, could generate motor neurons that expressed the specific markers such as HB9 and Olig2.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Neurônios Motores/citologia , Partenogênese , Animais , Técnicas de Cultura de Células , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Feminino , Antígenos CD15/genética , Antígenos CD15/metabolismo , Camundongos , Neurônios Motores/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
12.
Stem Cell Res Ther ; 12(1): 430, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332630

RESUMO

The study of human brain physiology, including cellular interactions in normal and disease conditions, has been a challenge due to its complexity and unavailability. Induced pluripotent stem cell (iPSC) study is indispensable in the study of the pathophysiology of neurological disorders. Nevertheless, monolayer systems lack the cytoarchitecture necessary for cellular interactions and neurological disease modeling. Brain organoids generated from human pluripotent stem cells supply an ideal environment to model both cellular interactions and pathophysiology of the human brain. This review article discusses the composition and interactions among neural lineage and non-central nervous system cell types in brain organoids, current studies, and future perspectives in brain organoid research. Ultimately, the promise of brain organoids is to unveil previously inaccessible features of neurobiology that emerge from complex cellular interactions and to improve our mechanistic understanding of neural development and diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Encéfalo , Humanos , Organoides , Tecnologia
13.
Stem Cell Rev Rep ; 16(6): 1049-1061, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32939647

RESUMO

Induced pluripotent stem cells (iPSCs) are mainly characterized by their unlimited proliferation abilities and potential to develop into almost any cell type. The creation of this technology has been of great interest to many scientific fields, especially regenerative biology. However, concerns about the safety of iPSC application in transplantation have arisen due to the tumorigenic and immunogenic properties of iPSCs. This review will briefly introduce the developing history of somatic reprogramming and applications of iPSC technology in regenerative medicine. In addition, the review will highlight two challenges to the efficient usage of iPSCs and the underlying mechanisms of these challenges. Finally, the review will discuss the expanding application of iPSC technology in cancer immunotherapy as a potential cancer vaccine and its advantages in auxiliary treatment compared with oncofetal antigen-based and embryonic stem cell (ESC)-based vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Animais , Carcinogênese/genética , Epigênese Genética , Humanos , Regeneração
14.
Cytokine Growth Factor Rev ; 52: 1-14, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32057701

RESUMO

Immune checkpoint inhibitors (ICIs) and immunotherapy have proven to be a transformative therapy for many forms of cancer treatment. While many antibodies targeting the PD-1, PD-L1, and CTLA-4 pathways have been approved for clinical use by the FDA, it is clear that a single ICI is not sufficient to eradicate disease. ICI combination strategies are being extensively investigated to advance cancer treatment to next curative stage. Among the immune checkpoint inhibitors being actively investigated, the potential of VISTA (V-domain Ig suppressor of T cell activation), a unique B7 family member that functions as both ligand and receptor, is being actively pursued. This article summarizes the expression and immunomodulatory effects of VISTA in autoimmune diseases and cancer, and assesses its potential as an additional component of immune checkpoint cancer therapy.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Antígenos B7/genética , Neoplasias/genética , Neoplasias/imunologia , Animais , Antígenos B7/imunologia , Regulação da Expressão Gênica , Humanos , Imunomodulação , Ativação Linfocitária , Camundongos
15.
Sci Rep ; 10(1): 7315, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355273

RESUMO

SLC16A family members play crucial roles in tumorigenesis and tumor progression. However, the exact role of distinct members in the SLC16A family in human pancreatic cancer remains unclear. Integrated bioinformatics analysis for the identification of therapeutic targets for certain cancers based on transcriptomics, proteomics and high-throughput sequencing could help us obtain novel information and understand potential underlying molecular mechanisms. In the present study, we investigated SLC16A family members in pancreatic cancer through accumulated data from GEO (Gene Expression Omnibus), TCGA (The Cancer Genome Atlas) and other available databases. The expression profile, clinical application significance and prognostic value of the SLC16A family for patients with pancreatic cancer were explored. SLC16A1, SLC16A3 and SLC16A13 exhibited biomarker potential for prognosis, and we further identified their related genes and regulatory networks, revealing core molecular pathways that require further investigation for pancreatic cancer.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Pancreáticas/genética , Simportadores/genética , Biomarcadores , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Progressão da Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Resultado do Tratamento
16.
Sci Rep ; 8(1): 10955, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026469

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) have the potential to be useful in the treatment of human diseases. While prior studies have reported multiple methods to generate iPSCs, DNA methylation continues to limit the totipotency and reprogramming efficiency of iPSCs. Here, we first show the competency of embryonic germ cells (EGCs) as a reprogramming catalyst capable of effectively promoting reprogramming induced by four defined factors, including Oct4, Sox2, Klf4 and c-Myc. Combining EGC extracts with these four factors resulted in formation of more embryonic stem cell-like colonies than did factors alone. Notably, expression of imprinted genes was higher with combined induction than with factors alone. Moreover, iPSCs derived from the combined inductors tended to have more global hypomethylation. Our research not only provides evidence that EGC extracts could activate DNA demethylation and reprogram imprinted genes, but also establishes a new way to enhance reprogramming of iPSCs, which remains a critical safety concern for potential use of iPSCs in regenerative medicine.


Assuntos
Células Germinativas Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células Cultivadas , Reprogramação Celular , Metilação de DNA , Células Germinativas Embrionárias/metabolismo , Feminino , Impressão Genômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-myc , Medicina Regenerativa
17.
Arch Med Sci ; 12(1): 199-207, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26925137

RESUMO

INTRODUCTION: Stem cells involved cell replacement therapies for type 1 diabetes mellitus is promising, yet time-consuming and inefficient. Exendin-4 is a glucagon-like peptide-1 (GLP-1) receptor agonist which has been reported to possess anti-apoptotic effects, thereby increasing ß-cell mass and improving ß-cell function. The present study aimed to investigate whether exendin-4 would enhance the differentiation of embryonic stem cells into insulin-secreting cells and improve the pancreatic differentiation strategy. MATERIAL AND METHODS: R1 embryonic stem cells were treated with different concentrations of exendin-4 and divided into three groups. In the high dosage group (group H), exendin-4 was added at the dosage of 10 nmol/l. In the low dosage group (group L), exendin-4 was added at the dosage of 0.1 nmol/l. Group C was a control. Expression of genes related to the ß-cell phenotype and immunofluorescence staining of insulin and C-peptide were detected. RESULTS: Compared with groups L and C, group H had the highest mRNA expression levels of Isl1, Pdx1, Ngn3, and Insulin1 (p < 0.05). Neurod1 and Glut2 only emerged at the final stage of differentiation in group H. Immunofluorescence analysis revealed that exendin-4 upregulated the protein expression of insulin and C-peptide. CONCLUSIONS: Exendin-4 remarkably facilitated Neurod1 and Glut2 gene transcription, and was able to induce differentiation of embryonic stem cells into endocrine and insulin-producing cells.

18.
Stem Cell Res Ther ; 7(1): 112, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515169

RESUMO

BACKGROUND: rDNA, the genes encoding ribosomal RNA (rRNA), is highly demanded for ribosome production and protein synthesis in growing cells such as pluripotent stem cells. rDNA transcription activity varies between cell types, metabolism conditions, and specific environmental challenges. Embryonic stem cells (ESCs), partially reprogrammed cells, and somatic cells reveal different epigenetic signatures, including rDNA epigenetic marks. rDNA epigenetic characteristic resetting is not quite clear during induced pluripotent stem cell (iPSC) generation. Little is known that whether the different rDNA epigenetic status in donor cells will result in different rDNA transcription activities, and furthermore affect reprogramming efficiency. METHODS: We utilized serum starvation-synchronized mouse embryonic fibroblasts (MEFs) to generate S-iPSCs. Both MEFs and serum-refeeding MEFs (S-MEFs) were reprogrammed to a pluripotent state. rDNA-related genes, UBF proteins, and rDNA methylation levels were detected during the MEF and S-MEF cell reprogramming process. RESULTS: We demonstrated that, after transient inhibition, retroviral induced rRNA transcriptional activity was reprogrammed towards a pluripotent state. Serum starvation would stimulate rDNA transcription reactivation during somatic cell reprogramming. Serum starvation improved the methylation status of donor cells at rRNA gene promoter regions. CONCLUSIONS: Our results provide insight into regulation of rDNA transcriptional activity during somatic cell reprogramming and allow for comparison of rDNA regulation patterns between iPSCs and S-iPSCs. Eventually, regulation of rDNA transcriptional activity will benefit partially reprogrammed cells to overcome the epigenetic barrier to pluripotency.


Assuntos
Ciclo Celular/fisiologia , Reprogramação Celular/genética , DNA Ribossômico/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Ativação Transcricional/genética , Animais , Reprogramação Celular/fisiologia , Células-Tronco Embrionárias , Epigênese Genética/genética , Epigenômica/métodos , Fibroblastos/fisiologia , Metilação , Camundongos , Regiões Promotoras Genéticas/genética
19.
ACS Appl Mater Interfaces ; 7(48): 26792-801, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26558750

RESUMO

Herein we describe a novel AC electrothermal (ACET) fluidic circulatory pumping chip to overcome the challenge of fluid-to-tissue ratio for "human-on-a-chip" cell culture systems. To avoid the deleterious effects of Joule heating and electric current on sample cells, a rectangular microchannel was designed with distantly separated regions for pumping and cell culture. Temperature variations were examined using a commercial thermocouple sensor to detect temperature values in both pumping and culture regions. To generate a sufficient ACET circulatory pumping rate, 30 pairs of asymmetrical electrodes were employed in the pumping region; generated ACET velocity was measured by fluorescent microparticle image velocimetry. The benefits of our pumping chip were demonstrated by culturing human embryonic kidney cells (HEK293T) and human colon carcinoma cells (SW620) for 72 h with an energized voltage of 3 V and 10 MHz. Cells grew and proliferated well, implying our ACET circulatory pumping chip has great potential for cell culture and tissue engineering applications.


Assuntos
Técnicas de Cultura de Células/métodos , Condutividade Elétrica , Eletroquímica/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Simulação por Computador , Meios de Cultura , Células HEK293 , Humanos , Análise Numérica Assistida por Computador , Reologia , Temperatura
20.
Sci Rep ; 5: 17829, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643778

RESUMO

Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT.


Assuntos
Autofagia , Clonagem de Organismos , Embrião de Mamíferos , Citoesqueleto de Actina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Metilação de DNA , Feminino , Fertilização in vitro , Expressão Gênica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa