RESUMO
The relationship between the PD-L1 (Programmed Death-Ligand 1)/PD-1 pathway, lung inflammation, and clinical outcomes in acute respiratory distress syndrome (ARDS) is poorly understood. We sought to determine whether PD-L1/PD-1 in the lung or blood is associated with ARDS and associated severity. We measured soluble PD-L1 (sPD-L1) in plasma and lower respiratory tract samples (ARDS1 [n = 59] and ARDS2 [n = 78]) or plasma samples alone (ARDS3 [n = 149]) collected from subjects with ARDS and tested for associations with mortality using multiple regression. We used mass cytometry to measure PD-L1/PD-1 expression and intracellular cytokine staining in cells isolated from BAL fluid (n = 18) and blood (n = 16) from critically ill subjects with or without ARDS enrolled from a fourth cohort. Higher plasma concentrations of sPD-L1 were associated with mortality in ARDS1, ARDS2, and ARDS3. In contrast, higher concentrations of sPD-L1 in the lung were either not associated with mortality (ARDS2) or were associated with survival (ARDS1). Alveolar PD-1POS T cells had more intracellular cytokine staining than PD-1NEG T cells. Subjects without ARDS had a higher ratio of PD-L1POS alveolar macrophages to PD-1POS T cells than subjects with ARDS. We conclude that sPD-L1 may have divergent cellular sources and/or functions in the alveolar versus blood compartments, given distinct associations with mortality. Alveolar leukocyte subsets defined by PD-L1 or PD-1 cell-surface expression have distinct cytokine secretion profiles, and the relative proportions of these subsets are associated with ARDS.
Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/sangue , Receptor de Morte Celular Programada 1/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Líquido da Lavagem Broncoalveolar/imunologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Citocinas/metabolismo , Citocinas/sangueRESUMO
OBJECTIVES: Improving the efficiency of clinical trials in acute hypoxemic respiratory failure (HRF) depends on enrichment strategies that minimize enrollment of patients who quickly resolve with existing care and focus on patients at high risk for persistent HRF. We aimed to develop parsimonious models predicting risk of persistent HRF using routine data from ICU admission and select research immune biomarkers. DESIGN: Prospective cohorts for derivation ( n = 630) and external validation ( n = 511). SETTING: Medical and surgical ICUs at two U.S. medical centers. PATIENTS: Adults with acute HRF defined as new invasive mechanical ventilation (IMV) and hypoxemia on the first calendar day after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We evaluated discrimination, calibration, and practical utility of models predicting persistent HRF risk (defined as ongoing IMV and hypoxemia on the third calendar day after admission): 1) a clinical model with least absolute shrinkage and selection operator (LASSO) selecting Pa o2 /F io2 , vasopressors, mean arterial pressure, bicarbonate, and acute respiratory distress syndrome as predictors; 2) a model adding interleukin-6 (IL-6) to clinical predictors; and 3) a comparator model with Pa o2 /F io2 alone, representing an existing strategy for enrichment. Forty-nine percent and 69% of patients had persistent HRF in derivation and validation sets, respectively. In validation, both LASSO (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.64-0.73) and LASSO + IL-6 (0.71; 95% CI, 0.66-0.76) models had better discrimination than Pa o2 /F io2 (0.64; 95% CI, 0.59-0.69). Both models underestimated risk in lower risk deciles, but exhibited better calibration at relevant risk thresholds. Evaluating practical utility, both LASSO and LASSO + IL-6 models exhibited greater net benefit in decision curve analysis, and greater sample size savings in enrichment analysis, compared with Pa o2 /F io2 . The added utility of LASSO + IL-6 model over LASSO was modest. CONCLUSIONS: Parsimonious, interpretable models that predict persistent HRF may improve enrichment of trials testing HRF-targeted therapies and warrant future validation.
Assuntos
Interleucina-6 , Insuficiência Respiratória , Adulto , Humanos , Estudos Prospectivos , Insuficiência Respiratória/terapia , Hipóxia/terapia , Unidades de Terapia IntensivaRESUMO
Late-onset (more than 48 h after ICU admission) acute respiratory distress syndrome (ARDS) is associated with shorter survival time and higher mortality; however, the underlying molecular targets remain unclear. As the WNT gene family is known to drive inflammation, immunity, and tissue fibrosis, all of which are closely related to the pathogenesis and prognosis of ARDS, we aim to investigate the associations of the WNT family with late-onset ARDS and 28-day survival. Genetic (n = 380), epigenetic (n = 185), transcriptional (n = 160), and protein (n = 300) data of patients with ARDS were extracted from the MEARDS (Molecular Epidemiology of ARDS) cohort. We used sure independence screening to identify late onset-related genetic biomarkers and constructed a genetic score on the basis of eight SNPs, which was associated with risk for late-onset ARDS (odds ratio [OR], 2.72; P = 3.81 × 10-14) and survival (hazard ratio [HR], 1.28; P = 0.008). The associations were further externally validated in the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) (ORlate onset, 2.49 [P = 0.006]; HRsurvival, 1.87 [P = 0.045]) and MESSI (Molecular Epidemiology of Severe Sepsis in the ICU) (ORlate onset, 4.12 [P = 0.026]; HRsurvival, 1.45 [P = 0.036]) cohorts. Furthermore, we functionally interrogated the six mapped genes of eight SNPs in the multiomics data and noted associations of WNT9A (WNT family member 9A) in epigenetic (ORlate onset, 2.95 [P = 9.91 × 10-4]; HRsurvival, 1.53 [P = 0.011]) and protein (ORlate onset, 1.42 [P = 0.035]; HRsurvival, 1.38 [P = 0.011]) data. The mediation analysis indicated that the effects of WNT9A on ARDS survival were mediated by late onset (HRindirect, 1.12 [P = 0.014] for genetic data; HRindirect, 1.05 [P = 0.030] for protein data). The essential roles of WNT9A in immunity and fibrosis may explain the different trajectories of recovery and dysfunction between early- and late-onset ARDS, providing clues for ARDS treatment.
Assuntos
Síndrome do Desconforto Respiratório , Sepse , Humanos , Multiômica , Síndrome do Desconforto Respiratório/genética , Sepse/complicações , Fibrose , Proteínas WntRESUMO
BACKGROUND: Community transmission of coronavirus 2019 (Covid-19) was detected in the state of Washington in February 2020. METHODS: We identified patients from nine Seattle-area hospitals who were admitted to the intensive care unit (ICU) with confirmed infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Clinical data were obtained through review of medical records. The data reported here are those available through March 23, 2020. Each patient had at least 14 days of follow-up. RESULTS: We identified 24 patients with confirmed Covid-19. The mean (±SD) age of the patients was 64±18 years, 63% were men, and symptoms began 7±4 days before admission. The most common symptoms were cough and shortness of breath; 50% of patients had fever on admission, and 58% had diabetes mellitus. All the patients were admitted for hypoxemic respiratory failure; 75% (18 patients) needed mechanical ventilation. Most of the patients (17) also had hypotension and needed vasopressors. No patient tested positive for influenza A, influenza B, or other respiratory viruses. Half the patients (12) died between ICU day 1 and day 18, including 4 patients who had a do-not-resuscitate order on admission. Of the 12 surviving patients, 5 were discharged home, 4 were discharged from the ICU but remained in the hospital, and 3 continued to receive mechanical ventilation in the ICU. CONCLUSIONS: During the first 3 weeks of the Covid-19 outbreak in the Seattle area, the most common reasons for admission to the ICU were hypoxemic respiratory failure leading to mechanical ventilation, hypotension requiring vasopressor treatment, or both. Mortality among these critically ill patients was high. (Funded by the National Institutes of Health.).
Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Estado Terminal/epidemiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Idoso , Asma/complicações , Asma/tratamento farmacológico , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Estado Terminal/mortalidade , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Hospitalização , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Radiografia , Respiração Artificial , Insuficiência Respiratória/etiologia , SARS-CoV-2 , Choque/etiologia , Tomografia Computadorizada por Raios X , Washington/epidemiologiaRESUMO
OBJECTIVES: We sought to determine whether hyperinflammatory acute respiratory distress syndrome (ARDS) and hypoinflammatory ARDS, which have been associated with differences in plasma biomarkers and mortality risk, also display differences in bronchoalveolar lavage (BALF) biomarker profiles. We then described the relationship between hyperinflammatory ARDS and hypoinflammatory ARDS to novel subphenotypes derived using BALF biomarkers. DESIGN: Secondary analysis of a randomized control trial testing omega-3 fatty acids for the treatment of ARDS. SETTING: Five North American intensive care units. PATIENTS: Adults (n = 88) on invasive mechanical ventilation within 48 hours of ARDS onset. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We classified 57 patients as hypoinflammatory and 31 patients as hyperinflammatory using a previously validated logistic regression model. Of 14 BALF biomarkers analyzed, interleukin-6 and granulocyte colony stimulating factor were higher among patients with hyperinflammatory ARDS compared with hypoinflammatory ARDS, though the differences were not robust to multiple hypothesis testing. We then performed a de novo latent class analysis of the 14 BALF biomarkers to identify two classes well separated by alveolar profiles. Class 2 (n = 63) displayed significantly higher interleukin-6, von Willebrand factor, soluble programmed cell death receptor-1, % neutrophils, and other biomarkers of inflammation compared with class 1 (n = 25). These BALF-derived classes had minimal overlap with the plasma-derived hyperinflammatory and hypoinflammatory classes, and the majority of both plasma-derived classes were in BALF-derived class 2 and characterized by high BALF biomarkers. Additionally, the BALF-derived classes were associated with clinical severity of pulmonary disease, with class 2 exhibiting lower Pao2 to Fio2 and distinct ventilatory parameters, unlike the plasma-derived classes, which were only related to nonpulmonary organ dysfunction. CONCLUSIONS: Hyperinflammatory and hypoinflammatory ARDS subphenotypes did not display significant differences in alveolar biologic profiles. Identifying ARDS subgroups using BALF measurements is a unique approach that complements information obtained from plasma, with potential to inform enrichment strategies in trials of lung-targeted therapies.
Assuntos
Interleucina-6 , Síndrome do Desconforto Respiratório , Adulto , Humanos , Síndrome do Desconforto Respiratório/terapia , Biomarcadores , Líquido da Lavagem Broncoalveolar , NeutrófilosRESUMO
OBJECTIVES: The COVID-19 pandemic threatened standard hospital operations. We sought to understand how this stress was perceived and manifested within individual hospitals and in relation to local viral activity. DESIGN: Prospective weekly hospital stress survey, November 2020-June 2022. SETTING: Society of Critical Care Medicine's Discovery Severe Acute Respiratory Infection-Preparedness multicenter cohort study. SUBJECTS: Thirteen hospitals across seven U.S. health systems. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We analyzed 839 hospital-weeks of data over 85 pandemic weeks and five viral surges. Perceived overall hospital, ICU, and emergency department (ED) stress due to severe acute respiratory infection patients during the pandemic were reported by a mean of 43% ( sd , 36%), 32% (30%), and 14% (22%) of hospitals per week, respectively, and perceived care deviations in a mean of 36% (33%). Overall hospital stress was highly correlated with ICU stress (ρ = 0.82; p < 0.0001) but only moderately correlated with ED stress (ρ = 0.52; p < 0.0001). A county increase in 10 severe acute respiratory syndrome coronavirus 2 cases per 100,000 residents was associated with an increase in the odds of overall hospital, ICU, and ED stress by 9% (95% CI, 5-12%), 7% (3-10%), and 4% (2-6%), respectively. During the Delta variant surge, overall hospital stress persisted for a median of 11.5 weeks (interquartile range, 9-14 wk) after local case peak. ICU stress had a similar pattern of resolution (median 11 wk [6-14 wk] after local case peak; p = 0.59) while the resolution of ED stress (median 6 wk [5-6 wk] after local case peak; p = 0.003) was earlier. There was a similar but attenuated pattern during the Omicron BA.1 subvariant surge. CONCLUSIONS: During the COVID-19 pandemic, perceived care deviations were common and potentially avoidable patient harm was rare. Perceived hospital stress persisted for weeks after surges peaked.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Estudos de Coortes , Estudos Prospectivos , HospitaisRESUMO
RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is a heterogeneous clinical syndrome with varying causes, pathophysiology, and outcomes. We incorporated plasma and urine biomarker measurements to identify AKI subgroups (subphenotypes) more tightly linked to underlying pathophysiology and long-term clinical outcomes. STUDY DESIGN: Multicenter cohort study. SETTING & PARTICIPANTS: 769 hospitalized adults with AKI matched with 769 without AKI, enrolled from December 2009 to February 2015 in the ASSESS-AKI Study. PREDICTORS: 29 clinical, plasma, and urinary biomarker parameters used to identify AKI subphenotypes. OUTCOME: Composite of major adverse kidney events (MAKE) with a median follow-up period of 4.7 years. ANALYTICAL APPROACH: Latent class analysis (LCA) and k-means clustering were applied to 29 clinical, plasma, and urinary biomarker parameters. Associations between AKI subphenotypes and MAKE were analyzed using Kaplan-Meier curves and Cox proportional hazard models. RESULTS: Among 769 AKI patients both LCA and k-means identified 2 distinct AKI subphenotypes (classes 1 and 2). The long-term risk for MAKE was higher with class 2 (adjusted HR, 1.41 [95% CI, 1.08-1.84]; P=0.01) compared with class 1, adjusting for demographics, hospital level factors, and KDIGO stage of AKI. The higher risk of MAKE among class 2 was explained by a higher risk of long-term chronic kidney disease progression and dialysis. The top variables that were different between classes 1 and 2 included plasma and urinary biomarkers of inflammation and epithelial cell injury; serum creatinine ranked 20th out of the 29 variables for differentiating classes. LIMITATIONS: A replication cohort with simultaneously collected blood and urine sampling in hospitalized adults with AKI and long-term outcomes was unavailable. CONCLUSIONS: We identify 2 molecularly distinct AKI subphenotypes with differing risk of long-term outcomes, independent of the current criteria to risk stratify AKI. Future identification of AKI subphenotypes may facilitate linking therapies to underlying pathophysiology to prevent long-term sequalae after AKI. PLAIN-LANGUAGE SUMMARY: Acute kidney injury (AKI) occurs commonly in hospitalized patients and is associated with high morbidity and mortality. The AKI definition lumps many different types of AKI together, but subgroups of AKI may be more tightly linked to the underlying biology and clinical outcomes. We used 29 different clinical, blood, and urinary biomarkers and applied 2 different statistical algorithms to identify AKI subtypes and their association with long-term outcomes. Both clustering algorithms identified 2 AKI subtypes with different risk of chronic kidney disease, independent of the serum creatinine concentrations (the current gold standard to determine severity of AKI). Identification of AKI subtypes may facilitate linking therapies to underlying biology to prevent long-term consequences after AKI.
Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Adulto , Humanos , Estudos de Coortes , Creatinina , Biomarcadores , Injúria Renal Aguda/etiologia , Insuficiência Renal Crônica/complicaçõesRESUMO
RATIONALE & OBJECTIVE: The role of plasma soluble tumor necrosis factor receptor 1 (sTNFR1) and sTNFR2 in the prognosis of clinical events after hospitalization with or without acute kidney injury (AKI) is unknown. STUDY DESIGN: Prospective cohort. SETTING & PARTICIPANTS: Hospital survivors from the ASSESS-AKI (Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury) and ARID (AKI Risk in Derby) studies with and without AKI during the index hospitalization who had baseline serum samples for biomarker measurements. PREDICTORS: We measured sTNFR1 and sTNFR2 from plasma samples obtained 3 months after discharge. OUTCOMES: The associations of biomarkers with longitudinal kidney disease incidence and progression, heart failure, and death were evaluated. ANALYTICAL APPROACH: Cox proportional hazard models. RESULTS: Among 1,474 participants with plasma biomarker measurements, 19% had kidney disease progression, 14% had later heart failure, and 21% died during a median follow-up of 4.4 years. For the kidney outcome, the adjusted HRs (AHRs) per doubling in concentration were 2.9 (95% CI, 2.2-3.9) for sTNFR1 and 1.9 (95% CI, 1.5-2.5) for sTNFR2. AKI during the index hospitalization did not modify the association between biomarkers and kidney events. For heart failure, the AHRs per doubling in concentration were 1.9 (95% CI, 1.4-2.5) for sTNFR1 and 1.5 (95% CI, 1.2-2.0) for sTNFR2. For mortality, the AHRs were 3.3 (95% CI, 2.5-4.3) for sTNFR1 and 2.5 (95% CI, 2.0-3.1) for sTNFR2. The findings in ARID were qualitatively similar in terms of the magnitude of association between biomarkers and outcomes. LIMITATIONS: Different biomarker platforms and AKI definitions; limited generalizability to other ethnic groups. CONCLUSIONS: Plasma sTNFR1 and sTNFR2 measured 3 months after hospital discharge were independently associated with clinical events regardless of AKI status during the index admission. sTNFR1 and sTNFR2 may assist with the risk stratification of patients during follow-up.
Assuntos
Injúria Renal Aguda , Insuficiência Cardíaca , Humanos , Estudos Prospectivos , Receptores do Fator de Necrose Tumoral , Injúria Renal Aguda/epidemiologia , Hospitalização , BiomarcadoresRESUMO
The single-nucleotide polymorphism (SNP) rs3184504 is broadly associated with increased risk for multiple autoimmune and cardiovascular diseases. Although the allele is uniquely enriched in European descent, the mechanism for the widespread selective sweep is not clear. In this study, we find the rs3184504*T allele had a strong association with reduced mortality in a human sepsis cohort. The rs3184504*T allele associates with a loss-of-function amino acid change (p.R262W) in the adaptor protein SH2B3, a likely causal variant. To better understand the role of SH2B3 in sepsis, we used mouse modeling and challenged SH2B3-deficient mice with a polymicrobial cecal-ligation puncture (CLP) procedure. We found SH2B3 deficiency improved survival and morbidity with less organ damage and earlier bacterial clearance compared with control mice. The peritoneal infiltrating cells exhibited augmented phagocytosis in Sh2b3 -/- mice with enriched recruitment of Ly6Chi inflammatory monocytes despite equivalent or reduced chemokine expression. Rapid cycling of monocytes and progenitors occurred uniquely in the Sh2b3 -/- mice following CLP, suggesting augmented myelopoiesis. To model the hypomorphic autoimmune risk allele, we created a novel knockin mouse harboring a similar point mutation in the murine pleckstrin homology domain of SH2B3. At baseline, phenotypic changes suggested a hypomorphic allele. In the CLP model, homozygous knockin mice displayed improved mortality and morbidity compared with wild-type or heterozygous mice. Collectively, these data suggest that hypomorphic SH2B3 improves the sepsis response and that balancing selection likely contributed to the relative frequency of the autoimmune risk variant.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Sepse/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único/genética , Sepse/genéticaRESUMO
Acute lung injury (ALI) is a leading cause of death in people infected with H5N1 avian influenza virus or the SARS-coronavirus. Imai et al. (2008) now report that ALI is triggered by the signaling of oxidized phospholipids through Toll-like receptor 4 (TLR4) and the adaptor protein TRIF. These findings provide insight into the molecular pathogenesis of ALI, a condition for which treatment options are currently very limited.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Camundongos , Estresse Oxidativo , Fosfolipídeos/metabolismoRESUMO
BACKGROUND: Evolving ARDS epidemiology and management during COVID-19 have prompted calls to reexamine the construct validity of Berlin criteria, which have been rarely evaluated in real-world data. We developed a Berlin ARDS definition (EHR-Berlin) computable in electronic health records (EHR) to (1) assess its construct validity, and (2) assess how expanding its criteria affected validity. METHODS: We performed a retrospective cohort study at two tertiary care hospitals with one EHR, among adults hospitalized with COVID-19 February 2020-March 2021. We assessed five candidate definitions for ARDS: the EHR-Berlin definition modeled on Berlin criteria, and four alternatives informed by recent proposals to expand criteria and include patients on high-flow oxygen (EHR-Alternative 1), relax imaging criteria (EHR-Alternatives 2-3), and extend timing windows (EHR-Alternative 4). We evaluated two aspects of construct validity for the EHR-Berlin definition: (1) criterion validity: agreement with manual ARDS classification by experts, available in 175 patients; (2) predictive validity: relationships with hospital mortality, assessed by Pearson r and by area under the receiver operating curve (AUROC). We assessed predictive validity and timing of identification of EHR-Berlin definition compared to alternative definitions. RESULTS: Among 765 patients, mean (SD) age was 57 (18) years and 471 (62%) were male. The EHR-Berlin definition classified 171 (22%) patients as ARDS, which had high agreement with manual classification (kappa 0.85), and was associated with mortality (Pearson r = 0.39; AUROC 0.72, 95% CI 0.68, 0.77). In comparison, EHR-Alternative 1 classified 219 (29%) patients as ARDS, maintained similar relationships to mortality (r = 0.40; AUROC 0.74, 95% CI 0.70, 0.79, Delong test P = 0.14), and identified patients earlier in their hospitalization (median 13 vs. 15 h from admission, Wilcoxon signed-rank test P < 0.001). EHR-Alternative 3, which removed imaging criteria, had similar correlation (r = 0.41) but better discrimination for mortality (AUROC 0.76, 95% CI 0.72, 0.80; P = 0.036), and identified patients median 2 h (P < 0.001) from admission. CONCLUSIONS: The EHR-Berlin definition can enable ARDS identification with high criterion validity, supporting large-scale study and surveillance. There are opportunities to expand the Berlin criteria that preserve predictive validity and facilitate earlier identification.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Registros Eletrônicos de Saúde , COVID-19/diagnóstico , Síndrome do Desconforto Respiratório/diagnóstico , Medição de RiscoRESUMO
BACKGROUND: The mechanisms underlying long-term sequelae after AKI remain unclear. Vessel instability, an early response to endothelial injury, may reflect a shared mechanism and early trigger for CKD and heart failure. METHODS: To investigate whether plasma angiopoietins, markers of vessel homeostasis, are associated with CKD progression and heart failure admissions after hospitalization in patients with and without AKI, we conducted a prospective cohort study to analyze the balance between angiopoietin-1 (Angpt-1), which maintains vessel stability, and angiopoietin-2 (Angpt-2), which increases vessel destabilization. Three months after discharge, we evaluated the associations between angiopoietins and development of the primary outcomes of CKD progression and heart failure and the secondary outcome of all-cause mortality 3 months after discharge or later. RESULTS: Median age for the 1503 participants was 65.8 years; 746 (50%) had AKI. Compared with the lowest quartile, the highest quartile of the Angpt-1:Angpt-2 ratio was associated with 72% lower risk of CKD progression (adjusted hazard ratio [aHR], 0.28; 95% confidence interval [CI], 0.15 to 0.51), 94% lower risk of heart failure (aHR, 0.06; 95% CI, 0.02 to 0.15), and 82% lower risk of mortality (aHR, 0.18; 95% CI, 0.09 to 0.35) for those with AKI. Among those without AKI, the highest quartile of Angpt-1:Angpt-2 ratio was associated with 71% lower risk of heart failure (aHR, 0.29; 95% CI, 0.12 to 0.69) and 68% less mortality (aHR, 0.32; 95% CI, 0.15 to 0.68). There were no associations with CKD progression. CONCLUSIONS: A higher Angpt-1:Angpt-2 ratio was strongly associated with less CKD progression, heart failure, and mortality in the setting of AKI.
Assuntos
Injúria Renal Aguda , Insuficiência Cardíaca , Insuficiência Renal Crônica , Injúria Renal Aguda/complicações , Idoso , Angiopoietinas , Feminino , Insuficiência Cardíaca/complicações , Humanos , Masculino , Prognóstico , Estudos Prospectivos , Insuficiência Renal Crônica/complicações , Fatores de RiscoRESUMO
BACKGROUND: The high-density lipoprotein hypothesis of atherosclerosis has been challenged by clinical trials of cholesteryl ester transfer protein (CETP) inhibitors, which failed to show significant reductions in cardiovascular events. Plasma levels of high-density lipoprotein cholesterol (HDL-C) decline drastically during sepsis, and this phenomenon is explained, in part, by the activity of CETP, a major determinant of plasma HDL-C levels. We tested the hypothesis that genetic or pharmacological inhibition of CETP would preserve high-density lipoprotein levels and decrease mortality in clinical cohorts and animal models of sepsis. METHODS: We examined the effect of a gain-of-function variant in CETP (rs1800777, p.Arg468Gln) and a genetic score for decreased CETP function on 28-day sepsis survival using Cox proportional hazard models adjusted for age and sex in the UK Biobank (n=5949), iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk; n=882), Copenhagen General Population Study (n=2068), Copenhagen City Heart Study (n=493), Early Infection (n=200), St Paul's Intensive Care Unit 2 (n=203), and Vasopressin Versus Norepinephrine Infusion in Patients With Septic Shock studies (n=632). We then studied the effect of the CETP inhibitor, anacetrapib, in adult female APOE*3-Leiden mice with or without human CETP expression using the cecal-ligation and puncture model of sepsis. RESULTS: A fixed-effect meta-analysis of all 7 cohorts found that the CETP gain-of-function variant was significantly associated with increased risk of acute sepsis mortality (hazard ratio, 1.44 [95% CI, 1.22-1.70]; P<0.0001). In addition, a genetic score for decreased CETP function was associated with significantly decreased sepsis mortality in the UK Biobank (hazard ratio, 0.77 [95% CI, 0.59-1.00] per 1 mmol/L increase in HDL-C) and iSPAAR cohorts (hazard ratio, 0.60 [95% CI, 0.37-0.98] per 1 mmol/L increase in HDL-C). APOE*3-Leiden.CETP mice treated with anacetrapib had preserved levels of HDL-C and apolipoprotein-AI and increased survival relative to placebo treatment (70.6% versus 35.3%, Log-rank P=0.03), whereas there was no effect of anacetrapib on the survival of APOE*3-Leiden mice that did not express CETP (50.0% versus 42.9%, Log-rank P=0.87). CONCLUSIONS: Clinical genetics and humanized mouse models suggest that inhibiting CETP may preserve high-density lipoprotein levels and improve outcomes for individuals with sepsis.
Assuntos
Anticolesterolemiantes/uso terapêutico , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , Oxazolidinonas/uso terapêutico , Sepse/tratamento farmacológico , Animais , Apolipoproteína A-I/sangue , Apolipoproteína E3/genética , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Humanos , Camundongos , Camundongos Transgênicos , Efeito Placebo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Sepse/mortalidade , Sepse/patologia , Taxa de SobrevidaRESUMO
Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.
Assuntos
COVID-19 , Insuficiência Respiratória , Antígeno B7-H1 , Quimiocinas , Estado Terminal , Humanos , Estudos Prospectivos , SARS-CoV-2 , Fator de Necrose Tumoral alfaRESUMO
OBJECTIVES: Multiple organ failure in critically ill patients is associated with poor prognosis, but biomarkers contributory to pathogenesis are unknown. Previous studies support a role for Fas cell surface death receptor (Fas)-mediated apoptosis in organ dysfunction. Our objectives were to test for associations between soluble Fas and multiple organ failure, identify protein quantitative trait loci, and determine associations between genetic variants and multiple organ failure. DESIGN: Retrospective observational cohort study. SETTING: Four academic ICUs at U.S. hospitals. PATIENTS: Genetic analyses were completed in a discovery (n = 1,589) and validation set (n = 863). Fas gene expression and flow cytometry studies were completed in outpatient research participants (n = 250). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: In discovery and validation sets of critically ill patients, we tested for associations between enrollment plasma soluble Fas concentrations and Sequential Organ Failure Assessment score on day 3. We conducted a genome-wide association study of plasma soluble Fas (discovery n = 1,042) and carried forward a single nucleotide variant in the FAS gene, rs982764, for validation (n = 863). We further tested whether the single nucleotide variant in FAS (rs982764) was associated with Sequential Organ Failure Assessment score, FAS transcriptional isoforms, and Fas cell surface expression. Higher plasma soluble Fas was associated with higher day 3 Sequential Organ Failure Assessment scores in both the discovery (ß = 4.07; p < 0.001) and validation (ß = 6.96; p < 0.001) sets. A single nucleotide variant in FAS (rs982764G) was associated with lower plasma soluble Fas concentrations and lower day 3 Sequential Organ Failure Assessment score in meta-analysis (-0.21; p = 0.02). Single nucleotide variant rs982764G was also associated with a lower relative expression of the transcript for soluble as opposed to transmembrane Fas and higher cell surface expression of Fas on CD4+ T cells. CONCLUSIONS: We found that single nucleotide variant rs982764G was associated with lower plasma soluble Fas concentrations in a discovery and validation population, and single nucleotide variant rs982764G was also associated with lower organ dysfunction on day 3. These findings support further study of the Fas pathway as a potential mediator of organ dysfunction in critically ill patients.
Assuntos
Estado Terminal/epidemiologia , Insuficiência de Múltiplos Órgãos/epidemiologia , Receptor fas/genética , Adulto , Idoso , Apoptose , Biomarcadores , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Escores de Disfunção Orgânica , Polimorfismo de Nucleotídeo Único , Receptor fas/sangueRESUMO
SARS-CoV-2, the virus causing COVID-19, has infected millions and has caused hundreds of thousands of fatalities. Risk factors for critical illness from SARS-CoV-2 infection include male gender, obesity, diabetes, and age >65. The mechanisms underlying the susceptibility to critical illness are poorly understood. Of interest, these comorbidities have previously been associated with increased signaling of Th17 cells. Th17 cells secrete IL-17A and are important for clearing extracellular pathogens, but inappropriate signaling has been linked to acute respiratory distress syndrome. Currently there are few treatment options for SARS-CoV-2 infections. This review describes evidence linking risk factors for critical illness in COVID-19 with increased Th17 cell activation and IL-17 signaling that may lead to increased likelihood for lung injury and respiratory failure. These findings provide a basis for testing the potential use of therapies directed at modulation of Th17 cells and IL-17A signaling in the treatment of COVID-19.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus/imunologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Interleucina-17/antagonistas & inibidores , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Células Th17/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/efeitos adversos , COVID-19 , Comorbidade , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Estado Terminal , Feminino , Humanos , Interleucina-17/metabolismo , Masculino , Pandemias , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/virologia , Fatores de Risco , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Th17/imunologia , Tratamento Farmacológico da COVID-19RESUMO
Acute kidney injury (AKI) has been reported to be associated with excess risks of death, kidney disease progression and cardiovascular events although previous studies have important limitations. To further examine this, we prospectively studied adults from four clinical centers surviving three months and more after hospitalization with or without AKI who were matched on center, pre-admission CKD status, and an integrated priority score based on age, prior cardiovascular disease or diabetes mellitus, preadmission estimated glomerular filtration rate (eGFR) and treatment in the intensive care unit during the index hospitalization between December 2009-February 2015, with follow-up through November 2018. All participants had assessments of kidney function before (eGFR) and at three months and annually (eGFR and proteinuria) after the index hospitalization. Associations of AKI with outcomes were examined after accounting for pre-admission and three-month post-discharge factors. Among 769 AKI (73% Stage 1, 14% Stage 2, 13% Stage 3) and 769 matched non-AKI adults, AKI was associated with higher adjusted rates of incident CKD (adjusted hazard ratio 3.98, 95% confidence interval 2.51-6.31), CKD progression (2.37,1.28-4.39), heart failure events (1.68, 1.22-2.31) and all-cause death (1.78, 1.24-2.56). AKI was not associated with major atherosclerotic cardiovascular events in multivariable analysis (0.95, 0.70-1.28). After accounting for degree of kidney function recovery and proteinuria at three months after discharge, the associations of AKI with heart failure (1.13, 0.80-1.61) and death (1.29, 0.84-1.98) were attenuated and no longer significant. Thus, assessing kidney function recovery and proteinuria status three months after AKI provides important prognostic information for long-term clinical outcomes.
Assuntos
Injúria Renal Aguda , Doenças Cardiovasculares , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Adulto , Assistência ao Convalescente , Doenças Cardiovasculares/epidemiologia , Taxa de Filtração Glomerular , Humanos , Rim , Alta do Paciente , Estudos Prospectivos , Fatores de RiscoRESUMO
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 causes substantial morbidity. Tocilizumab, an interleukin-6 receptor antagonist, might improve outcomes by mitigating inflammation. We conducted a retrospective study of patients admitted to the University of Washington Hospital system with COVID-19 and requiring supplemental oxygen. Outcomes included clinical improvement, defined as a two-point reduction in severity on a six-point ordinal scale or discharge, and mortality within 28 days. We used Cox proportional-hazards models with propensity score inverse probability weighting to compare outcomes in patients who did and did not receive tocilizumab. We evaluated 43 patients who received tocilizumab and 45 who did not. Patients receiving tocilizumab were younger with fewer comorbidities but higher baseline oxygen requirements. Tocilizumab treatment was associated with reduced C-reactive protein, fibrinogen, and temperature, but there were no meaningful differences in time to clinical improvement (adjusted hazard ratio [aHR], 0.92; 95% confidence interval [CI], 0.38-2.22) or mortality (aHR, 0.57; 95% CI, 0.21-1.52). A numerically higher proportion of tocilizumab-treated patients had subsequent infections, transaminitis, and cytopenias. Tocilizumab did not improve outcomes in hospitalized patients with COVID-19. However, this study was not powered to detect small differences, and there remains the possibility for a survival benefit.
Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Tratamento Farmacológico da COVID-19 , Idoso , Proteína C-Reativa/metabolismo , COVID-19/metabolismo , COVID-19/mortalidade , COVID-19/virologia , Feminino , Fibrinogênio/metabolismo , Hospitalização , Humanos , Imunomodulação , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Interleucina-6/metabolismo , Estudos Retrospectivos , SARS-CoV-2/efeitos dos fármacos , Resultado do TratamentoRESUMO
BACKGROUND: Acute hypoxemic respiratory failure (HRF) is associated with high morbidity and mortality, but its heterogeneity challenges the identification of effective therapies. Defining subphenotypes with distinct prognoses or biologic features can improve therapeutic trials, but prior work has focused on ARDS, which excludes many acute HRF patients. We aimed to characterize persistent and resolving subphenotypes in the broader HRF population. METHODS: In this secondary analysis of 2 independent prospective ICU cohorts, we included adults with acute HRF, defined by invasive mechanical ventilation and PaO2-to-FIO2 ratio ≤ 300 on cohort enrollment (n = 768 in the discovery cohort and n = 1715 in the validation cohort). We classified patients as persistent HRF if still requiring mechanical ventilation with PaO2-to-FIO2 ratio ≤ 300 on day 3 following ICU admission, or resolving HRF if otherwise. We estimated relative risk of 28-day hospital mortality associated with persistent HRF, compared to resolving HRF, using generalized linear models. We also estimated fold difference in circulating biomarkers of inflammation and endothelial activation on cohort enrollment among persistent HRF compared to resolving HRF. Finally, we stratified our analyses by ARDS to understand whether this was driving differences between persistent and resolving HRF. RESULTS: Over 50% developed persistent HRF in both the discovery (n = 386) and validation (n = 1032) cohorts. Persistent HRF was associated with higher risk of death relative to resolving HRF in both the discovery (1.68-fold, 95% CI 1.11, 2.54) and validation cohorts (1.93-fold, 95% CI 1.50, 2.47), after adjustment for age, sex, chronic respiratory illness, and acute illness severity on enrollment (APACHE-III in discovery, APACHE-II in validation). Patients with persistent HRF displayed higher biomarkers of inflammation (interleukin-6, interleukin-8) and endothelial dysfunction (angiopoietin-2) than resolving HRF after adjustment. Only half of persistent HRF patients had ARDS, yet exhibited higher mortality and biomarkers than resolving HRF regardless of whether they qualified for ARDS. CONCLUSION: Patients with persistent HRF are common and have higher mortality and elevated circulating markers of lung injury compared to resolving HRF, and yet only a subset are captured by ARDS definitions. Persistent HRF may represent a clinically important, inclusive target for future therapeutic trials in HRF.
Assuntos
Mortalidade/tendências , Fenótipo , Insuficiência Respiratória/classificação , APACHE , Biomarcadores/análise , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/mortalidadeRESUMO
BACKGROUND: Analyses of blood biomarkers involved in the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection can reveal distinct biological pathways and inform development and testing of therapeutics for COVID-19. Our objective was to evaluate host endothelial, epithelial and inflammatory biomarkers in COVID-19. METHODS: We prospectively enrolled 171 ICU patients, including 78 (46%) patients positive and 93 (54%) negative for SARS-CoV-2 infection from April to September, 2020. We compared 22 plasma biomarkers in blood collected within 24 h and 3 days after ICU admission. RESULTS: In critically ill COVID-19 and non-COVID-19 patients, the most common ICU admission diagnoses were respiratory failure or pneumonia, followed by sepsis and other diagnoses. Similar proportions of patients in both groups received invasive mechanical ventilation at the time of study enrollment. COVID-19 and non-COVID-19 patients had similar rates of acute respiratory distress syndrome, severe acute kidney injury, and in-hospital mortality. While concentrations of interleukin 6 and 8 were not different between groups, markers of epithelial cell injury (soluble receptor for advanced glycation end products, sRAGE) and acute phase proteins (serum amyloid A, SAA) were significantly higher in COVID-19 compared to non-COVID-19, adjusting for demographics and APACHE III scores. In contrast, angiopoietin 2:1 (Ang-2:1 ratio) and soluble tumor necrosis factor receptor 1 (sTNFR-1), markers of endothelial dysfunction and inflammation, were significantly lower in COVID-19 (p < 0.002). Ang-2:1 ratio and SAA were associated with mortality only in non-COVID-19 patients. CONCLUSIONS: These studies demonstrate that, unlike other well-studied causes of critical illness, endothelial dysfunction may not be characteristic of severe COVID-19 early after ICU admission. Pathways resulting in elaboration of acute phase proteins and inducing epithelial cell injury may be promising targets for therapeutics in COVID-19.