Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018109

RESUMO

The (non)-Kolbe oxidation of valeric acid, sourced from a hydrolysis product of cellulose, provides a sustainable synthetic route to access value-added products, such as butene. An essential mechanistic step preceding product formation involves the oxidative and decarboxylative cleavage of a C-C bond. Yet, the role of the electrode surface in mediating this oxidative step remains an open question: the electron transfer can occur either via an inner-sphere or outer-sphere mechanism. Here, we report the electrochemical, in situ spectroscopic, computational, and reactivity studies of RuO2-mediated oxidative decarboxylation of valeric acid to butene in aqueous electrolytes. We find that carboxylates bind to RuO2 anode surfaces at potential values where decarboxylation products are observed. Our results are consistent with a reaction scheme where the competitive and catalytic oxygen evolution reaction (OER) is impeded by these bound carboxylate species while these species are inert toward butene formation. Our results implicate an outer-sphere electron transfer mechanism for decarboxylation where the surface chemistry of the RuO2 electrode serves to enable higher non-Kolbe reaction selectivity by suppressing the parasitic OER. Our findings delineate interfacial design principles for selective electrochemical systems that utilize water as the ultimate oxidant for sustainable decarboxylation.

2.
J Am Chem Soc ; 146(17): 12243-12252, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651361

RESUMO

Iron-sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn-H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.

3.
J Am Chem Soc ; 145(32): 17734-17745, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548952

RESUMO

Charge-transfer events central to energy conversion and storage and molecular sensing occur at electrified interfaces. Synthetic control over the interface is traditionally accessed through electrode-specific covalent tethering of molecules. Covalent linkages inherently limit the scope and the potential stability window of molecularly tunable electrodes. Here, we report a synthetic strategy that is agnostic to the electrode's surface chemistry to molecularly define electrified interfaces. We append ferrocene redox reporters to amphiphiles, utilizing non-covalent electrostatic and van der Waals interactions to prepare a self-assembled layer stable over a 2.9 V range. The layer's voltammetric response and in situ infrared spectra mimic those reported for analogous covalently bound ferrocene. This design is electrode-orthogonal; layer self-assembly is reversible and independent of the underlying electrode material's surface chemistry. We demonstrate that the design can be utilized across a wide range of electrode material classes (transition metal, carbon, carbon composites) and morphologies (nanostructured, planar). Merging atomically precise organic synthesis of amphiphiles with in situ non-covalent self-assembly at polarized electrodes, our work sets the stage for predictive and non-fouling synthetic control over electrified interfaces.

4.
J Am Chem Soc ; 143(18): 6990-7001, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915049

RESUMO

Electrocatalysis enables the construction of C-C bonds under mild conditions via controlled formation of carbon-centered radicals. For sequences initiated by alkyl halide reduction, coordinatively unsaturated Ni complexes commonly serve as single-electron transfer agents, giving rise to the foundational question of whether outer- or inner-sphere electron transfer oxidative addition prevails in redox mediation. Indeed, rational design of electrochemical processes requires the discrimination of these two electron transfer pathways, as they can have outsized effects on the rate of substrate bond activation and thus impact radical generation rates and downstream product selectivities. We present results from combined synthetic, electroanalytical, and computational studies that examine the mechanistic differences of single electron transfer to alkyl halides imparted by Ni metal-ligand cooperativity. Electrogenerated reduced Ni species, stabilized by delocalized spin density onto a redox-active tpyPY2Me polypyridyl ligand, activates alkyl iodides via outer-sphere electron transfer, allowing for the selective activation of alkyl iodide substrates over halogen atom donors and the controlled generation and sequestration of electrogenerated radicals. In contrast, the Ni complex possessing a redox-innocent pentapyridine congener activates the substrates in an inner-sphere fashion owning to a purely metal-localized spin, thereby activating both substrates and halogen atom donors in an indiscriminate fashion, generating a high concentration of radicals and leading to unproductive dimerization. Our data establish that controlled electron transfer via Ni-ligand cooperativity can be used to limit undesired radical recombination products and promote selective radical processes in electrochemical environments, providing a generalizable framework for designing redox mediators with distinct rate and potential requirements.


Assuntos
Complexos de Coordenação/química , Elétrons , Níquel/química , Transporte de Elétrons , Radicais Livres/química , Ligantes , Estrutura Molecular
5.
Proc Natl Acad Sci U S A ; 113(32): E4585-93, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450088

RESUMO

CO2 reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H2 We combine in situ surface-enhanced IR absorption spectroscopy (SEIRAS) and electrochemical kinetic studies to probe the mechanistic basis for kinetic bifurcation between H2 and CO production on polycrystalline Au electrodes. Under the conditions of CO2 reduction catalysis, electrogenerated CO species are irreversibly bound to Au in a bridging mode at a surface coverage of ∼0.2 and act as kinetically inert spectators. Electrokinetic data are consistent with a mechanism of CO production involving rate-limiting, single-electron transfer to CO2 with concomitant adsorption to surface active sites followed by rapid one-electron, two-proton transfer and CO liberation from the surface. In contrast, the data suggest an H2 evolution mechanism involving rate-limiting, single-electron transfer coupled with proton transfer from bicarbonate, hydronium, and/or carbonic acid to form adsorbed H species followed by rapid one-electron, one-proton, or H recombination reactions. The disparate proton coupling requirements for CO and H2 production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation, and the high population of spectator CO species highlights the complex heterogeneity of electrode surfaces under conditions of fuel-forming electrocatalysis.

6.
Angew Chem Int Ed Engl ; 57(30): 9300-9304, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29766624

RESUMO

We quantified changes in interfacial pH local to the electrochemical double layer during electrocatalysis by using a concurrent non-faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis-2-butene-1,4-diol to form a mixture of 1,4-butanediol and n-butanol with selectivity that is linearly dependent on the bulk solution pH value. We show that kinetic branching occurs from a common surface-bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH value within molecular length scales of the surface. We used the pH-dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and found that the local pH value can vary dramatically (>3 units) relative to the bulk value even at modest current densities in well-buffered electrolytes. This study highlights the key role of interfacial pH variation in modulating inner-sphere electrocatalysis.

7.
J Am Chem Soc ; 139(47): 17109-17113, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-28978199

RESUMO

We show that bicarbonate is neither a general acid nor a reaction partner in the rate-limiting step of electrochemical CO2 reduction catalysis mediated by planar polycrystalline Au surfaces. We formulate microkinetic models and propose diagnostic criteria to distinguish the role of bicarbonate. Comparing these models with the observed zero-order dependence in bicarbonate and simulated interfacial concentration gradients, we conclude that bicarbonate is not a general acid cocatalyst. Instead, it acts as a viable proton donor past the rate-limiting step and a sluggish buffer that maintains the bulk but not local pH in CO2-saturated aqueous electrolytes.

8.
J Am Chem Soc ; 137(47): 14834-7, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26536054

RESUMO

Gold inverse opal (Au-IO) thin films are active for CO2 reduction to CO with high efficiency at modest overpotentials and high selectivity relative to hydrogen evolution. The specific activity for hydrogen evolution diminishes by 10-fold with increasing porous film thickness, while CO evolution activity is largely unchanged. We demonstrate that the origin of hydrogen suppression in Au-IO films stems from the generation of diffusional gradients within the pores of the mesostructured electrode rather than changes in surface faceting or Au grain size. For electrodes with optimal mesoporosity, 99% selectivity for CO evolution can be obtained at overpotentials as low as 0.4 V. These results establish electrode mesostructuring as a complementary method for tuning selectivity in CO2-to-fuels catalysis.

9.
Nat Catal ; 7(2): 120-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38434422

RESUMO

Construction of C‒C bonds in medicinal chemistry frequently draws on the reductive coupling of organic halides with ketones or aldehydes. Catalytic C(sp3)‒C(sp3) bond formation, however, is constrained by the competitive side reactivity of radical intermediates following sp3 organic halide activation. Here, an alternative paradigm deploys catalytic Ag surfaces for reductive fragment-based electrophile coupling compatible with sp3 organic halides. We use in-situ spectroscopy, electrochemical analyses, and simulation to uncover the catalytic interfacial structure and guide reaction development. Specifically, Mg(OAc)2 outcompetes the interaction between Ag and the aldehyde, thereby tuning the Ag surface for selective product formation. Data are consistent with an increased population of Mg-bound aldehyde facilitating the addition of a carbon-centered radical (product of Ag-electrocatalyzed organic halide reduction) to the carbonyl. Electron transfer from Ag to the resultant alkoxy radical yields the desired alcohol. Molecular interfacial tuning at reusable catalytic electrodes will accelerate development of sustainable organic synthetic methods.

10.
ACS Cent Sci ; 2(8): 522-8, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27610413

RESUMO

Rational design of selective CO2-to-fuels electrocatalysts requires direct knowledge of the electrode surface structure during turnover. Metallic Cu is the most versatile CO2-to-fuels catalyst, capable of generating a wide array of value-added products, including methane, ethylene, and ethanol. All of these products are postulated to form via a common surface-bound CO intermediate. Therefore, the kinetics and thermodynamics of CO adsorption to Cu play a central role in determining fuel-formation selectivity and efficiency, highlighting the need for direct observation of CO surface binding equilibria under catalytic conditions. Here, we synthesize nanostructured Cu films adhered to IR-transparent Si prisms, and we find that these Cu surfaces enhance IR absorption of bound molecules. Using these films as electrodes, we examine Cu-catalyzed CO2 reduction in situ via IR spectroelectrochemistry. We observe that Cu surfaces bind electrogenerated CO, derived from CO2, beginning at -0.60 V vs RHE with increasing surface population at more negative potentials. Adsorbed CO is in dynamic equilibrium with dissolved (13)CO and exchanges rapidly under catalytic conditions. The CO adsorption profiles are pH independent, but adsorbed CO species undergo a reversible transformation on the surface in modestly alkaline electrolytes. These studies establish the potential, concentration, and pH dependencies of the CO surface population on Cu, which serve to maintain a pool of this vital intermediate primed for further reduction to higher order fuel products.

11.
ACS Nano ; 5(12): 9511-22, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22032176

RESUMO

A new synthetic scheme allowing structural modifications to temperature-sensitive and water-soluble D-penicillamine-passivated Mn(2+)-doped (CdSSe)ZnS (core)shell nanocrystals (MnQDs) was reported using air-stable chemicals. The temperature-dependent optical properties of the nanocrystals were tuned by changing their structure and composition--the ZnS shell thickness and the Mn(2+)-dopant concentration. Thick ZnS shells significantly reduce the interference of nonradiative transitions on ratiometric emission intensities. High-dopant concentration affords consistent temperature sensitivity. In addition to the new base structure for quantum dot ratiometric temperature sensing via flexible, glovebox-free routes, the results also underscore the generalizability of the emission intensity ratio scheme for temperature sensing, originally proposed for rare-earth-doped materials.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Termografia/instrumentação , Termômetros , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotecnologia/instrumentação , Tamanho da Partícula , Solubilidade , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa