Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Exp Bot ; 74(3): 889-908, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36433902

RESUMO

Methyl jasmonate (MeJA) induces various defence responses in seed plants, but for early plant lineages, information on the potential of jasmonates to elicit stress signalling and trigger physiological modifications is limited. The spikemoss Selaginella martensii was exposed to a range of MeJA concentrations (0, 10, 25, and 50 mM), and biogenic volatile organic compound (BVOC) emissions, photosynthetic rate (A), and stomatal conductance (gs) were continuously measured. In addition, changes in phytohormone concentrations and gene expression were studied. Enhancement of methanol, lipoxygenase pathway volatiles and linalool emissions, and reductions in A and gs, were MeJA dose-dependent. Before MeJA treatment, the concentration of 12-oxo-phytodienoic acid (OPDA) was 7-fold higher than jasmonic acid (JA). MeJA treatment rapidly increased OPDA and JA concentrations (within 30 min), with the latter more responsive. Some genes involved in BVOC biosynthesis and OPDA-specific response were up-regulated at 30 min after MeJA spraying, whereas those in the JA signalling pathway were not affected. Although JA was synthesized in S. martensii, OPDA was prioritized as a signalling molecule upon MeJA application. MeJA inhibited primary and enhanced secondary metabolism; we propose that fast-emitted linalool could serve as a marker of elicitation of stress-induced metabolism in lycophytes.


Assuntos
Reguladores de Crescimento de Plantas , Selaginellaceae , Reguladores de Crescimento de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069317

RESUMO

The apricot (Prunus armeniaca L.) is a fruit that belongs to the Rosaceae family; it has a unique flavor and is of important economic and nutritional value. The composition and content of soluble sugars and organic acids in fruit are key factors in determining the flavor quality. However, the molecular mechanism of sugar and acid accumulation in apricots remains unclear. We measured sucrose, fructose, glucose, sorbitol, starch, malate, citric acid, titratable acid, and pH, and investigated the transcriptome profiles of three apricots (the high-sugar cultivar 'Shushanggan', common-sugar cultivar 'Sungold', and low-sugar cultivar 'F43') at three distinct developmental phases. The findings indicated that 'Shushanggan' accumulates a greater amount of sucrose, glucose, fructose, and sorbitol, and less citric acid and titratable acid, resulting in a better flavor; 'Sungold' mainly accumulates more sucrose and less citric acid and starch for the second flavor; and 'F43' mainly accumulates more titratable acid, citric acid, and starch for a lesser degree of sweetness. We investigated the DEGs associated with the starch and sucrose metabolism pathways, citrate cycle pathway, glycolysis pathway, and a handful of sugar transporter proteins, which were considered to be important regulators of sugar and acid accumulation. Additionally, an analysis of the co-expression network of weighted genes unveiled a robust correlation between the brown module and sucrose, glucose, and fructose, with VIP being identified as a hub gene that interacted with four sugar transporter proteins (SLC35B3, SLC32A, SLC2A8, and SLC2A13), as well as three structural genes for sugar and acid metabolism (MUR3, E3.2.1.67, and CSLD). Furthermore, we found some lncRNAs and miRNAs that regulate these genes. Our findings provide clues to the functional genes related to sugar metabolism, and lay the foundation for the selection and cultivation of high-sugar apricots in the future.


Assuntos
Prunus armeniaca , Transcriptoma , Açúcares/metabolismo , Prunus armeniaca/genética , Frutas/metabolismo , Carboidratos/análise , Glucose/metabolismo , Ácidos/metabolismo , Sacarose/metabolismo , Ácido Cítrico/metabolismo , Amido/metabolismo , Frutose/metabolismo , Metaboloma , Sorbitol/análise
3.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240096

RESUMO

Fruit size is one of the essential quality traits and influences the economic value of apricots. To explore the underlying mechanisms of the formation of differences in fruit size in apricots, we performed a comparative analysis of anatomical and transcriptomics dynamics during fruit growth and development in two apricot cultivars with contrasting fruit sizes (large-fruit Prunus armeniaca 'Sungold' and small-fruit P. sibirica 'F43'). Our analysis identified that the difference in fruit size was mainly caused by the difference in cell size between the two apricot cultivars. Compared with 'F43', the transcriptional programs exhibited significant differences in 'Sungold', mainly in the cell expansion period. After analysis, key differentially expressed genes (DEGs) most likely to influence cell size were screened out, including genes involved in auxin signal transduction and cell wall loosening mechanisms. Furthermore, weighted gene co-expression network analysis (WGCNA) revealed that PRE6/bHLH was identified as a hub gene, which interacted with 1 TIR1, 3 AUX/IAAs, 4 SAURs, 3 EXPs, and 1 CEL. Hence, a total of 13 key candidate genes were identified as positive regulators of fruit size in apricots. The results provide new insights into the molecular basis of fruit size control and lay a foundation for future breeding and cultivation of larger fruits in apricot.


Assuntos
Prunus armeniaca , Prunus armeniaca/genética , Frutas , Transcriptoma , Melhoramento Vegetal , Perfilação da Expressão Gênica
4.
BMC Plant Biol ; 21(1): 152, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761884

RESUMO

BACKGROUND: Prunus pedunculata Pall, the deciduous shrub of Amygdalus subgenus in Rosaceae, is a new kind of desert oil-bearing tree. It has a long story of being planted in the West and North of China for sand fixation and desert control. In addition, the seeds of P. pedunculata are rich of oil, especially the monounsaturated fatty acid and polyunsaturated fatty acid. However, little is known about the molecular mechanisms of oil accumulation during the seed development of P. pedunculata. RESULTS: The seeds of P. pedunculata from three independent plants at 10, 18, 24, 31, 39, 45, 59 and 73 days after flowering (DAF) were obtained and the oil compositions were evaluated. It showed that oleic acid was the dominant type of oil content in the mature seeds (from 32.724% at 10DAF to 72.06% at 73DAF). Next, transcriptome sequencing for the developing seeds produced 988.795 million high quality reads and TRINITY assembled 326,271 genes for the first transcriptome for P. pedunculata. After the assembled transcriptome was evaluated by BUSCO with 85.9% completeness, we identified 195,342, 109,850 and 121,897 P. pedunculata genes aligned to NR, GO and KEGG pathway databases, respectively. Then, we predicted 23,229 likely proteins from the assembled transcriptome and identified 1917 signal peptides and 5512 transmembrane related proteins. In the developing seeds we detected 91,362 genes (average FPKM > 5) and correlation analysis indicated three possible development stages - early (10 ~ 24DAF), middle (31 ~ 45DAF) and late (59 ~ 73DAF). We next analyzed the differentially expressed genes (DEGs) in the developing seeds. Interestingly, compared to 10DAF the number of DEGs was increased from 4406 in 18DAF to 27,623 in 73DAF. Based on the gene annotation, we identified 753, 33, 8 and 645 DEGs related to the fatty acid biosynthesis, lipid biosynthesis, oil body and transcription factors. Notably, GPAT, DGD1, LACS2, UBC and RINO were highly expressed at the early development stage, ω6-FAD, SAD, ACP, ACCA and AHG1 were highly expressed at the middle development stage, and LACS6, DGD1, ACAT1, AGPAT, WSD1, EGY2 and oleosin genes were highly expressed at the late development stage. CONCLUSIONS: This is the first time to study the developing seed transcriptome of P. pedunculata and our findings will provide a valuable resource for future studies. More importantly, it will improve our understanding of molecular mechanisms of oil accumulation in P. pedunculata.


Assuntos
Ácidos Graxos/biossíntese , Genes de Plantas , Prunus/genética , Sementes/genética , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Metabolismo dos Lipídeos , Anotação de Sequência Molecular , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Prunus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo , Fatores de Transcrição/metabolismo
6.
J Integr Plant Biol ; 60(11): 1070-1082, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29944209

RESUMO

Increasing evidence indicates that long non-coding RNAs (lncRNAs) play pivotal roles in regulatory networks controlling plant and animal gene expression. However, lncRNA roles in regulating rubber biosynthesis in Eucommia ulmoides, an emerging source of natural rubber (Eu-rubber), are currently unknown. Here, we report on RNA deep-sequencing of E. ulmoides fruits at two developmental stages. Based on application of a stringent pipeline, 29,103 lncRNAs and 9,048 transcripts of uncertain coding potential (TUCPs) were identified. Two differentially expressed (DE) TUCPs appear to simultaneously regulate 12 protein-coding genes involved in Eu-rubber biosynthesis (GIEBs), as well as 95 DE genes. Functional categorization of these 95 DE genes indicated their involvement in subcellular microstructures and cellular processes, such as cell wall, cell division, and growth. These DE genes may participate in the differentiation and development of laticifers, where Eu-rubber is synthesized. A model is proposed in which "commanders" (DE TUCPs) direct the "builders" (DE genes) to construct a "storehouse" of materials needed for Eu-rubber synthesis, and the "workers" (GIEBs) to synthesize Eu-rubber. These findings provide insights into both cis- and trans-polyisoprene biosynthesis in plants, laying the foundation for additional studies of this crucial process.


Assuntos
Eucommiaceae/metabolismo , RNA Longo não Codificante/genética , Borracha/metabolismo , Eucommiaceae/genética , Frutas/genética , Frutas/metabolismo
7.
Breed Sci ; 66(1): 90-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27069394

RESUMO

The Ussurian pear is the most important cultivated pear in the northern part of China. Cultivated Ussurian pears are considered to have derived from Pyrus ussuriensis Maxim. which is native to the northeast of China. In Japan, two varieties of P. ussuriensis, P. ussuriensis var. aromatica and var. hondoensis are native to the northern area and the central area of the main island respectively. In order to reveal the origin of Pyrus ussuriensis var. aromatica distributed in the northern area of main island of Japan, more than 40 explorations have been performed in Japan and in China, and more than 30 natural habitats were recognized. These natural habitats are at risk of extinction because of human development and forest degradation caused by climate change. Population structure and genetic diversity of P. ussuriensis in China and P. ussuriensis var. aromatica in Japan have been investigated using both morphological and molecular markers in order to define appropriate conservation units, and to provide a good focus for conservation management. Distant evolutionary relationships between P. ussuriensis Maxim. in China and P. ussuriensis var. aromatica in Japan inferred from population genetic structure and phylogenetic analysis are also discussed.

8.
Data Brief ; 53: 110077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328281

RESUMO

Amygdalus species have considerable ecological and economic value, however, the phylogenetic relationships among Amygdalus remain controversy. In this study, we sequenced and assembled the chloroplast (cp) genomes of five Amygdalus species: Prunus communis, P. mongolica, P. pedunculata, P. triloba, and P. mira. We then conducted comparative genomic analyses and constructed their phylogenetic relationships. The genome length ranged from 157,870 to 158,451 bp, and 131 genes were annotated (86 protein-coding genes, 37 tRNAs, and 8 rRNAs). Additionally, 49-57 simple sequence repeats were detected, with most in the large single-copy region and with AT base preferences. Comparative genomic analyses revealed high similarities in structure, order, and gene content. However, we identified four highly divergent sequences: trnR-UCU-atpA, nbdhC-trnV-UAC, ycf4-cemA, and rpl32-trnL-UAG. The phylogenomic relationship analysis suggested that the Amygdalus species were grouped together, in which P. pedunculata, P. triloba, and Prunus tangutica were categorized into a branch, P. mongolica and Prunus davidiana were clustered a branch. This study provides an improved understanding of the genetic relationships among the Amygdalus and provides a basis for the development and utilization of Amygdalus resources.

9.
Foods ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254601

RESUMO

Fruit color affects its commercial value. ß-carotene is the pigment that provides color for many fruits and vegetables. However, the molecular mechanism of ß-carotene metabolism during apricot ripening is largely unknown. Here, we investigated whether ß-carotene content affects apricot fruit color. First, the differences in ß-carotene content between orange apricot 'JTY' and white apricot 'X15' during nine developmental stages (S1-S9) were compared. ß-carotene contents highly significantly differed between 'JTY' and 'X15' from S5 (color transition stage) onwards. Whole-transcriptome analysis showed that the ß-carotene synthesis genes 15-cis-phytoene desaturase (PaPDS) and 15-cis-phytoene synthase (PaPSY) significantly differed between the two cultivars during the color transition stage. There was a 5 bp deletion in exon 11 of PaPDS in 'X15', which led to early termination of amino acid translation. Gene overexpression and virus-induced silencing analysis showed that truncated PaPDS disrupted the ß-carotene biosynthesis pathway in apricot pulp, resulting in decreased ß-carotene content and a white phenotype. Furthermore, virus-induced silencing analysis showed that PaPSY was also a key gene in ß-carotene biosynthesis. These findings provide new insights into the molecular regulation of apricot carotenoids and provide a theoretical reference for breeding new cultivars of apricot.

10.
Front Plant Sci ; 14: 1080504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778702

RESUMO

Saline-alkali stress is one of the main abiotic stress factors affecting plant growth and development. Trollius chinensis is a perennial herbal medicinal plant with high values for garden application. However, its response and tolerance to saline-alkali stress is unclear. In this study, we mixed four salts (NaCl: Na2SO4: NaHCO3: Na2CO3) with a concentration ratio of 1:9:9:1, and applied low (40 and 80 mM) and high (120 and 160 mM) saline-alkali stress to analyze osmotic regulation substances, antioxidant systems and the gene expression of T. chinensis. Along with higher saline-alkali stress, the leaf relative water content (RWC) started to decrease only from high stress, while the malondialdehyde (MDA) content in leaves decreased continuously, and the contents of proline (Pro), soluble sugar (SS) and soluble protein (SP) increased compared with control. The activities of antioxidant enzymes and the contents of non-enzymatic antioxidants were increased positively with the accumulation of superoxide anion (O2 •-) and hydrogen peroxide (H2O2). For instance, the ascorbic acid-glutathione (AsA-GSH) cycle was enhanced in T. chinensis seedling leaves subject to saline-alkali stress. Principal Component Analysis (PCA) indicates that MDA, Pro, SS, SP, H2O2, O2 •-, and GSH are important indexes to evaluate the response and tolerance of T. chinensis to saline-alkali stress. Through RNA-Seq, a total of 474 differentially expressed genes (DEGs) were found in plant under low saline-alkaline stress (40 mM, MSA1) vs. control. Among them, 364 genes were up-regulated and 110 genes were down-regulated. DEGs were extensively enriched in carbohydrate transport, transferase activity, zeatin biosynthesis, ABC transporters, and spliceosome. The transcription factor family MYB, BZIP, WRKY, and NAC were related to its saline-alkali tolerance. In addition, some DEGs encode key enzymes in the processes of osmoregulation and antioxidation, including betaine aldehyde dehydrogenase (BADH), inositol monophosphatase (IMP), chloroperoxidase (CPO), thioredoxin (Trx), and germin-like protein (GLPs) were found. Overall, these findings provide new insights into the physiological changes and molecular mechanism of T. chinensis to saline-alkali stress and lay a foundation for application of T. chinensis in saline-alkali environment.

11.
Plant Physiol Biochem ; 201: 107841, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331075

RESUMO

Drought stress occurs more frequently in recent years due to the global climate change. Widely distributed in northern China, Mongolia, and Russia, Trollius chinensis Bunge has high medicinal and ornamental values and is often exposed to drought stress, while the mechanism underlying its drought response is still unclear. In this study, we applied 74-76% (control, CK), 49-51% (mild drought), 34-36% (moderate drought), and 19-21% (severe drought, SD) of the soil gravimetric water content to T. chinensis, and measured leaf physiological characteristics on the 0, 5th, 10th, 15th day after the soil reaching the set drought severities, and on the 10th day after rehydration. The results showed that many physiological parameters, such as chlorophyll contents, Fv/Fm, ΦPSⅡ, Pn, and gs decreased with the deepening of severity and duration of drought stress and recovered to some extent after rehydration. On the 10th day of drought stress, leaves in SD and CK were selected for RNA-Seq, and 1649 differentially expressed genes (DEGs) were found, including 548 up-regulated and 1101 down-regulated DEGs. Gene Ontology enrichment found that the DEGs were mainly enriched in catalytic activity and thylakoid. Koyto Encyclopedia of Genes and Genomes enrichment found that DEGs were enriched in some metabolic pathways such as carbon fixation and photosynthesis. Among them, the differential expression of genes related to photosynthesis process, ABA biosynthesis and signaling pathway, such as NCED, SnRK2, PsaD, PsbQ, and PetE, might explain why T. chinensis could tolerate and recover from as long as 15 days of severe drought conditions.


Assuntos
Secas , Fotossíntese , Fotossíntese/genética , Hidratação , Solo , Expressão Gênica , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
12.
Genes (Basel) ; 14(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895308

RESUMO

The production and quality of apricots in China is currently limited by the availability of germplasm resource characterizations, including identification at the species and cultivar level. To help address this issue, the complete chloroplast genomes of Prunus armeniaca L., P. sibirica L. and kernel consumption apricot were sequenced, characterized, and phylogenetically analyzed. The three chloroplast (cp) genomes ranged from 157,951 to 158,224 bp, and 131 genes were identified, including 86 protein-coding genes, 37 rRNAs, and 8 tRNAs. The GC content ranged from 36.70% to 36.75%. Of the 170 repetitive sequences detected, 42 were shared by all three species, and 53-57 simple sequence repeats were detected with AT base preferences. Comparative genomic analysis revealed high similarity in overall structure and gene content as well as seven variation hotspot regions, including psbA-trnK-UUU, rpoC1-rpoB, rpl32-trnL-UAG, trnK-rps16, ndhG-ndhI, ccsA-ndhD, and ndhF-trnL. Phylogenetic analysis showed that the three apricot species clustered into one group, and the genetic relationship between P. armeniaca and kernel consumption apricot was the closest. The results of this study provide a theoretical basis for further research on the genetic diversity of apricots and the development and utilization of molecular markers for the genetic engineering and breeding of apricots.


Assuntos
Genoma de Cloroplastos , Prunus armeniaca , Prunus armeniaca/genética , Genômica/métodos , Filogenia , Melhoramento Vegetal
13.
Biomed Res Int ; 2022: 4064588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360520

RESUMO

Objective: Dietary supplements (DS) may improve micronutrient deficiencies, but the unique eating habits and cultural customs of the Chinese Mongolian population affect their choice of DS. Therefore, this study adopted a cross-sectional method to explore the current status of DS use and to assess the influencing factors in the Mongolian population in Inner Mongolia, China. Methods: We used a multistage random cluster sampling method to select 1,434 Mongolian people aged ≥ 18 years in Hohhot and Xilinhot, Inner Mongolia. Data regarding general patient characteristics and DS use through questionnaire surveys were obtained, and the blood plasma was collected for biochemical index detection. The binary logistic regression and decision tree algorithm were used to predict the factors influencing DS use among the Mongolian population. Results: Among 1,434 participants that completed the baseline survey, the usage rate of DS was 18.83%, and more women than men used DS (P = 0.017). Higher use of DS was reported among individuals aged ≤ 34 years, but this difference is not statistically significant (P = 0.052). Usage rate was higher among those living in urban areas (P < 0.001), those with higher education (P < 0.001), those engaged in mental work (P < 0.001), and nonsmokers (P = 0.019). The biochemical test results showed that the proportion of people with abnormal total cholesterol levels using DS was lower (P = 0.003), but that of those with abnormal triglyceride levels using DS was higher (P = 0.001), compared with the proportion of those with normal levels in each case. The most commonly used supplement was calcium (58.15%). Education level was the main factor affecting DS intake. The results of the binary logistic regression model and decision tree model both showed that region, educational level, and abnormal triglyceride levels were significant factors influencing DS intake among Mongolians. Conclusion: Findings from this study indicate that DS intake is uncommon in the Mongolian population. In addition, sex, region, education level, and triglyceride levels may influence DS use.


Assuntos
Povo Asiático , Suplementos Nutricionais , Adolescente , Adulto , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Triglicerídeos
14.
J Environ Sci (China) ; 23(2): 255-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21516999

RESUMO

Combined effects of ozone (03) and cadmium (Cd) on growth and physiology of winter wheat (Triticum aestivum L. cv. JM22) were determined. Wheat plants were grown without or with Cd and exposed to charcoal-filtered air (< 10 ppb O3) or elevated O3 (80 +/- 5 ppb, 7 hr/day) for 20 days. Results showed that 03 considerably depressed light saturated net photosynthetic rate (-20%), stomatal conductance (-33%), chlorophyll content (-33%), and total biomass (-29%) without Cd. The corresponding decreases were further enhanced by 45%, 56%, 60% and 59%, respectively with Cd, indicating a synergistic effect of O3 and Cd on wheat. Ozone significantly increased the activity of superoxide dismutase (46%), catalase (48%) and peroxidase (56%). However, great increases in malondialdehyde (MDA) content (2.55 folds) and intercellular CO2 concentration (1.13 folds) were noted in O3+Cd treatment compared to control. Our findings demonstrated that the increased anti-oxidative activities in wheat plants exposed to O3+Cd might not be enough to overcome the adverse effects of the combination of both pollutants as evidenced by further increase in MDA content, which is an important indicator of lipid peroxidation. Precise prediction model on O3 damages to crop should be conducted to ensure agricultural production security by considering environmental constraints in an agricultural system in peri-urban regions.


Assuntos
Poluentes Atmosféricos/toxicidade , Cádmio/toxicidade , Ozônio/toxicidade , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Catalase/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Triticum/enzimologia , Triticum/metabolismo
15.
Plant Methods ; 17(1): 98, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556150

RESUMO

BACKGROUND: Apricot is cultivated worldwide because of its high nutritive content and strong adaptability. Its flesh is delicious and has a unique and pleasant aroma. Apricot kernel is also consumed as nuts. The genome of apricot has been sequenced, and the transcriptome, resequencing, and phenotype data have been increasely generated. However, with the emergence of new information, the data are expected to integrate, and disseminate. RESULTS: To better manage the continuous addition of new data and increase convenience, we constructed the apricot genomic and phenotypic database (AprGPD, http://apricotgpd.com ). At present, AprGPD contains three reference genomes, 1692 germplasms, 306 genome resequencing data, 90 RNA sequencing data. A set of user-friendly query, analysis, and visualization tools have been implemented in AprGPD. We have also performed a detailed analysis of 59 transcription factor families for the three genomes of apricot. CONCLUSION: Six modules are displayed in AprGPD, including species, germplasm, genome, variation, product, tools. The data integrated by AprGPD will be helpful for the molecular breeding of apricot.

16.
Front Plant Sci ; 12: 690040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671366

RESUMO

Aquaporins (AQPs) are essential channel proteins that play a major role in plant growth and development, regulate plant water homeostasis, and transport uncharged solutes across biological membranes. In this study, 33 AQP genes were systematically identified from the kernel-using apricot (Prunus armeniaca L.) genome and divided into five subfamilies based on phylogenetic analyses. A total of 14 collinear blocks containing AQP genes between P. armeniaca and Arabidopsis thaliana were identified by synteny analysis, and 30 collinear blocks were identified between P. armeniaca and P. persica. Gene structure and conserved functional motif analyses indicated that the PaAQPs exhibit a conserved exon-intron pattern and that conserved motifs are present within members of each subfamily. Physiological mechanism prediction based on the aromatic/arginine selectivity filter, Froger's positions, and three-dimensional (3D) protein model construction revealed marked differences in substrate specificity between the members of the five subfamilies of PaAQPs. Promoter analysis of the PaAQP genes for conserved regulatory elements suggested a greater abundance of cis-elements involved in light, hormone, and stress responses, which may reflect the differences in expression patterns of PaAQPs and their various functions associated with plant development and abiotic stress responses. Gene expression patterns of PaAQPs showed that PaPIP1-3, PaPIP2-1, and PaTIP1-1 were highly expressed in flower buds during the dormancy and sprouting stages of P. armeniaca. A PaAQP coexpression network showed that PaAQPs were coexpressed with 14 cold resistance genes and with 16 cold stress-associated genes. The expression pattern of 70% of the PaAQPs coexpressed with cold stress resistance genes was consistent with the four periods [Physiological dormancy (PD), ecological dormancy (ED), sprouting period (SP), and germination stage (GS)] of flower buds of P. armeniaca. Detection of the transient expression of GFP-tagged PaPIP1-1, PaPIP2-3, PaSIP1-3, PaXIP1-2, PaNIP6-1, and PaTIP1-1 revealed that the fusion proteins localized to the plasma membrane. Predictions of an A. thaliana ortholog-based protein-protein interaction network indicated that PaAQP proteins had complex relationships with the cold tolerance pathway, PaNIP6-1 could interact with WRKY6, PaTIP1-1 could interact with TSPO, and PaPIP2-1 could interact with ATHATPLC1G. Interestingly, overexpression of PaPIP1-3 and PaTIP1-1 increased the cold tolerance of and protein accumulation in yeast. Compared with wild-type plants, PaPIP1-3- and PaTIP1-1-overexpressing (OE) Arabidopsis plants exhibited greater tolerance to cold stress, as evidenced by better growth and greater antioxidative enzyme activities. Overall, our study provides insights into the interaction networks, expression patterns, and functional analysis of PaAQP genes in P. armeniaca L. and contributes to the further functional characterization of PaAQPs.

17.
Front Plant Sci ; 12: 802827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145534

RESUMO

Freezing during the flowering of Prunus sibirica is detrimental to fruit production. The late flowering (LF) type, which is delayed by 7-15 days compared with the normal flowering (NF) type, avoids damages at low temperature, but the molecular mechanism of LF remains unclear. Therefore, this study was conducted to comprehensively characterize floral bud differentiation. A histological analysis showed that initial floral bud differentiation was delayed in the LF type compared to the NF type. Genome-wide associated studies (GWAS) showed that a candidate gene (PaF106G0600023738.01) was significantly associated with LF type. It was identified as trehalose-6-phosphate phosphatase (PsTPPF), which is involved in trehalose-6-phosphate (Tre6P) signaling pathway and acts on floral transition. A whole-transcriptome RNA sequencing analysis was conducted, and a total of 6,110 differential expression (DE) mRNAs, 1,351 DE lncRNAs, and 148 DE miRNAs were identified. In addition, 24 DE mRNAs related with floral transition were predicted, and these involved the following: three interactions between DE lncRNAs and DE mRNAs of photoperiod pathway with two mRNAs (COP1, PaF106G0400018289.01 and CO3, MXLOC_025744) and three lncRNAs (CCLR, LTCONS_00031803, COCLR1, LTCONS_00046726, and COCLR2, LTCONS_00046731); one interaction between DE miRNAs and DE mRNAs with one mRNA, encoding trehalose-6-phosphate synthase (PsTPS1, PaF106G0100001132.01), and one miRNA (miRNA167h). Combined with the expression profiles and Tre6P levels, functions of PsTPPF and PsTPS1 in Tre6P regulation were considered to be associated with flowering time. A new network of ceRNAs correlated with LF was constructed, and it consisted of one mRNA (PsTPS1), one lncRNA (TCLR, LTCONS_00034157), and one miRNA (miR167h). This study provided insight into the molecular regulatory mechanism of LF in Prunus sibirica.

18.
Front Plant Sci ; 11: 566824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013988

RESUMO

Senescence is the main limitation for cut foliage display in vase. Naturally occurring polyamines such as putrescine (Put) have been considered effective anti-senescence agents. However, effect of Put on cut foliage in vase in a realistic indoor environment has not yet been revealed. In the present study, effects of Put spraying on the postharvest performance of cut foliage of Nephrolepis cordifolia L. were investigated. Cut fronds sprayed with deionized water (Put0) showed visible injuries after 10 days in vase. Meanwhile, chlorophyll (Chl), soluble protein (Sp), and proline (Pro) content were decreased by 60.15, 57.93, and 73.09% respectively, photochemical activity reflected by Chl fluorescence parameters was inhibited, whereas electrolyte leakage (EL), contents of soluble sugar (Ss), malondialdehyde (MDA), and hydrogen peroxide (H2O2) were increased (+194.29, +44.83, +34.06, and +178.01%, respectively). Put spraying extended the vase life of the cut foliage and the 2.0 mM Put had a longer vase life (21 days) than 0.2 mM (15 days). Leaf spraying of 2.0 mM Put for 10 days significantly ameliorated the losses of Chl, Sp, and Pro content (-10.72, -26.29, and -42.64%, respectively), followed by 0.2 mM Put (-27.36, -36.24, and -60.55%, respectively). Put spraying also improved photochemical capability and prevented membrane impairment as well as visible injury in comparison with Put0. In addition, 2.0 mM Put had a better mitigating ability than that of 0.2 mM. Leaf spraying of 2.0 mM Put greatly reduced the decline of the effective quantum yield of photochemical energy conversion in PSII (ΦPSII), the maximal quantum yield of PSII photochemistry measured in the dark-adapted state (Fv/Fm) and electron transport rate (ETR) (-7.89, -12.91, and -10.06%, respectively), and also inhibited the increases of EL, MDA, Ss, and H2O2 (+31.87, +6.43, +16.22, and +49.40%, respectively). Overall, Put played important roles in deterring the degradation of Chl, Ss, and Pro, detoxifying the H2O2, weakening the sugar signaling, mitigating the decline of photochemical activity, and eventually postponing the leaf senescence. The present study gives new insights into effects of Put on leaf senescence and provides a strategy for preserving post-harvest cut foliage.

19.
Mitochondrial DNA B Resour ; 4(2): 3731-3733, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33366164

RESUMO

Prunus mira Koehne belonging to family Rosaceae, is an indigenous species distributed in Tibet, China. De novo assembly with low coverage whole genome sequencing data facilitated to generate the complete chloroplast (cp) genome of P. mira in this study. The genome was a circular DNA molecule with 158,153 bp in length. It exhibited a typical quadripartite structure comprising a large single-copy region (LSC, 86,319 bp), a small single-copy region (SSC, 19,022 bp) and a pair of inverted repeat regions (IRs, 26,406 bp each). A total of 112 genes were predicted, which included 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis indicated that P. mira was the most ancestral and basal lineage within the subgenus Amygdalus (Prunoideae subfamily), which is conform to the traditional classification.

20.
J Plant Physiol ; 233: 58-72, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30599461

RESUMO

Proline-rich protein (PRP) is a plant cell wall associated protein. Its distinct patterns of regulation and localization studied in a number of plants indicate that it may play important roles in growth and development. However, the mechanism of how these genes control secondary cell wall development in tree species is largely unknown. Here, we report that a Populus deltoides (Marsh.) proline-rich protein gene PdPRP was preferentially expressed in immature/mature phloem and immature xylem in P. deltoides. PdPRP overexpression increased poplar plant height and diameter as well as the radial width of the phloem and xylem regions, facilitated secondary wall deposition, and induced expression of genes related to microfibril angle (MFA) and secondary wall biosynthesis. Downregulation of PdPRP retarded poplar growth, decreased the radial width of the secondary phloem and secondary xylem regions, reduced secondary wall thickening in fibers and vessels, and decreased the expression of genes related to MFA and secondary wall biosynthesis. These results suggest that PdPRP might positively regulate secondary cell wall formation by promoting secondary wall thickening and expansion in poplar. PdPRP-overexpressing poplar had a lower MFA, indicating that PdPRP may be useful for improving wood stiffness and properties in plants. Together, our results demonstrate that PdPRP is a proline-rich protein associated with cell wall development, playing a critical role in regulating secondary cell wall formation in poplar.


Assuntos
Parede Celular/metabolismo , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Populus/genética , Arabidopsis , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Floema/metabolismo , Filogenia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Populus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa