Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecol Appl ; 32(7): e2685, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35633203

RESUMO

Lakes are dynamic ecosystems that can transition among stable states. Since ecosystem-scale transitions can be detrimental and difficult to reverse, being able to predict impending critical transitions in state variables has become a major area of research. However, not all transitions are detrimental, and there is considerable interest in better evaluating the success of management interventions to support adaptive management strategies. Here, we retrospectively evaluated the agreement between time series statistics (i.e., standard deviation, autocorrelation, skewness, and kurtosis-also known as early warning indicators) and breakpoints in state variables in a lake (Lake Simcoe, Ontario, Canada) that has improved from a state of eutrophication. Long-term (1980 to 2019) monitoring data collected fortnightly throughout the ice-free season were used to evaluate historical changes in 15 state variables (e.g., dissolved organic carbon, phosphorus, chlorophyll a) and multivariate-derived time series at three monitoring stations (shallow, middepth, deep) in Lake Simcoe. Time series results from the two deep-water stations indicate that over this period Lake Simcoe transitioned from an algal-dominated state toward a state with increased water clarity (i.e., Secchi disk depth) and silica and lower nutrient and chlorophyll a concentrations, which coincided with both substantial management intervention and the establishment of invasive species (e.g., Dreissenid mussels). Consistent with improvement, Secchi depth at the deep-water stations demonstrated expected trends in statistical indicators prior to identified breakpoints, whereas total phosphorus and chlorophyll a revealed more nuanced patterns. Overall, state variables were largely found to yield inconsistent trends in statistical indicators, so many breakpoints were likely not reflective of traditional bifurcation critical transitions. Nevertheless, statistical indicators of state variable time series may be a valuable tool for the adaptive management and long-term monitoring of lake ecosystems, but we call for more research within the domain of early warning indicators to establish a better understanding of state variable behavior prior to lake changes.


Assuntos
Ecossistema , Lagos , Clorofila A , Monitoramento Ambiental/métodos , Eutrofização , Ontário , Fósforo/análise , Estudos Retrospectivos , Dióxido de Silício , Água
2.
Ecol Appl ; 31(8): e02447, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448320

RESUMO

Concentration-discharge (C-Q) relationships have been widely used to assess the hydrochemical processes that control solute fluxes from streams. Here, using a large regional dataset we assessed long-term C-Q relationships for total phosphorus (TP), soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN), and nitrate (NO3 ) for 63 streams in Ontario, Canada, to better understand seasonal regional behavior of nutrients. We used C-Q plots, Kruskal-Wallis tests, and breakpoint analysis to characterize overall regional nutrient C-Q relationships and assess seasonal effects, anthropogenic impacts, and differences between "rising" and "falling" hydrograph limbs to gain an understanding of the dominant processes controlling overall C-Q relationships. We found that all nutrient concentrations were higher on average in catchments with greater levels of anthropogenic disturbance (agricultural and urban land use). TP, SRP, and TKN showed similar C-Q dynamics, with nearly flat or gently sloping C-Q relationships up to a discharge threshold after which C-Q slopes substantially increased during the rising limb. These thresholds were seasonally variable, with summer and winter thresholds occurring at lower flows compared with autumn and greater variability during snowmelt. These patterns suggest that seasonal strategies to reduce high flows, such as creating riparian wetlands or reservoirs, in conjunction with reducing related nutrient transport during high flows would be the most effective way to mitigate elevated in-stream concentrations and event export. Elevated rising limb concentrations suggest that nutrients accumulate in upland parts of the catchment during drier periods and that these are released during rain events. NO3 C-Q patterns tended to be different from the other nutrients and were further complicated by anthropogenic land use, with greater reductions on the falling limb in more disturbed catchments during certain seasons. There were few significant NO3 hydrograph limb differences, indicating that there was likely to be no dominant hysteretic pattern across our study region due to variability in hysteresis from catchment to catchment. This suggests that this nutrient may be difficult to successfully manage at the regional scale.


Assuntos
Monitoramento Ambiental , Rios , Agricultura , Nitrogênio/análise , Ontário , Fósforo/análise , Chuva , Rios/química
3.
Arch Environ Contam Toxicol ; 79(3): 283-297, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33063196

RESUMO

Silver nanoparticles (AgNP) are widely used as antibacterial agents in both commercial products and for industrial applications. As such, AgNP has a high potential for release into freshwater environments. As part of a whole-lake ecosystem experiment to examine the impacts of AgNP exposure at low µg/L concentrations over multiple years, we evaluated biological responses in Yellow Perch (Perca flavescens) before, during, and after AgNP additions to a freshwater lake. Yellow Perch were monitored for responses to in situ AgNP additions at the cellular (suite of biomarkers), individual (growth, prey consumption, and metabolism), and population (abundance and gross prey consumption) scales. At the cellular level, several biomarkers of oxidative stress in liver tissues revealed down-regulation, including decreased mRNA levels of catalase and glutathione peroxidase in Yellow Perch collected during AgNP exposure, and elevated ratios of reduced to oxidized glutathione. At the individual level, Yellow Perch bioenergetic models revealed that prey consumption and total metabolism significantly declined during AgNP additions and remained depressed one year after AgNP addition. At the population level, Yellow Perch densities and gross prey consumption declined after AgNP was added to the lake. Together, these results reveal a holistic assessment of the negative impacts of chronic exposure to environmentally relevant AgNP concentrations (i.e., µg/L) on Yellow Perch at cellular, individual, and population levels.


Assuntos
Lagos/química , Nanopartículas Metálicas/toxicidade , Percas/metabolismo , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Ecossistema , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Percas/crescimento & desenvolvimento
4.
Environ Sci Technol ; 52(19): 11114-11122, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30179475

RESUMO

A total of 15 kg of silver nanoparticles (AgNPs) was added continuously over two ice-free field seasons to a boreal lake (i.e., Lake 222) at the IISD Experimental Lakes Area in Canada. We monitored the accumulation of silver (Ag) in the tissues of yellow perch ( Perca flavescens) and northern pike ( Esox lucius) exposed to the AgNPs under environmentally relevant conditions. The greatest accumulation was observed in the liver tissues of pike, and a single pike sampled in the second year of additions had the highest concentration observed in liver of 5.1 micrograms per gram of wet weight. However, the Ag concentrations in gill and muscle tissue of both pike and perch did not exceed 0.35 micrograms per gram of wet weight. Following additions of AgNP, the Ag residues in fish tissues declined, with a half-life of Ag in pike liver of 119 days. Monitoring using passive sampling devices and single-particle inductively coupled plasma mass spectrometry during the AgNP addition phase confirmed that Ag nanoparticles were present in the water column and that estimated mean concentrations of Ag increased over time to a maximum of 11.5 µg/L. These data indicate that both a forage fish and a piscivorous fish accumulated Ag in a natural lake ecosystem dosed with AgNPs, leading to Ag concentrations in some tissues of the piscivorous species that were 3 orders of magnitude greater than the concentrations in the water.


Assuntos
Nanopartículas Metálicas , Percas , Poluentes Químicos da Água , Animais , Canadá , Ecossistema , Esocidae , Lagos , Prata
5.
Ecotoxicology ; 26(4): 502-515, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28233158

RESUMO

The increasing use of silver nanoparticles (AgNPs) in consumer products raises concerns regarding the environmental exposure and impact of AgNPs on natural aquatic environments. Here, we investigated the effects of environmentally relevant AgNP concentrations on the natural plankton communities using in situ enclosures. Using twelve lake enclosures, we tested the hypotheses that AgNP concentration, dosing regimen, and capping agent (poly-vinyl pyrrolidone (PVP) vs. citrate) exhibit differential effects on plankton communities. Each of the following six treatments was replicated twice: control (no AgNPs added), low, medium, and high chronic PVP treatments (PVP-capped AgNPs added continuously, with target nominal concentrations of 4, 16, and 64 µg/L, respectively), citrate treatment (citrate-capped AgNPs added continuously, target nominal concentrations of 64 µg/L), and pulse treatment (64 µg/L PVP-AgNPs added as a single dose). Although Ag accumulated in the phytoplankton, no statistically significant treatment effect was found on phytoplankton community structure or biomass. In contrast, as AgNP exposure rate increased, zooplankton abundance generally increased while biomass and species richness declined. We also observed a shift in the size structure of zooplankton communities in the chronic AgNP treatments. In the pulse treatments, zooplankton abundance and biomass were reduced suggesting short periods of high AgNP concentrations affect zooplankton communities differently than chronic exposures. We found no evidence that capping agent affected AgNP toxicity on either community. Overall, our study demonstrates variable AgNP toxicity between trophic levels with stronger AgNP effects on zooplankton. Such effects on zooplankton are troubling and indicate that AgNP contamination could affect aquatic food webs.


Assuntos
Exposição Ambiental/análise , Nanopartículas Metálicas/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Lagos/química , Fitoplâncton/fisiologia , Prata/toxicidade , Testes de Toxicidade Crônica , Zooplâncton/fisiologia
6.
Glob Chang Biol ; 22(2): 613-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26390994

RESUMO

Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.


Assuntos
Ecossistema , Atividades Humanas , Qualidade da Água , Canadá , Carbono/análise , Clorofila/análise , Clorofila A , Humanos , Lagos , Nitratos/análise , Nitritos/análise , Fósforo/análise , Lagoas , Densidade Demográfica , Rios , Estados Unidos , Poluentes da Água/análise
7.
Bull Environ Contam Toxicol ; 96(1): 83-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611367

RESUMO

To examine how nanoparticles influence biogeochemical cycles in streams, we studied the acute impact of nanosilver (nAg) and nanoparticulate zero-valent iron (nZVI) exposure on nutrient and oxygen exchange across the sediment-water interface of two streams (agricultural canal and wetland) that differed in their water quality and sediment characteristics. At the agricultural site, nAg increased oxygen consumption and decreased N2 flux rates from that observed in control incubations. nZVI caused sediment-water systems from both streams to go hypoxic within 1.5 h of exposure. N2 flux rates were at least an order of magnitude higher in nZVI treatments as compared to control. Water column nitrate and nitrite concentrations were not impacted by nZVI exposure but total dissolved phosphorus concentrations were higher in cores treated with nZVI. nAg and nZVI exposure to surface water ecosystems can disrupt ecological function across the sediment-water interface.


Assuntos
Nanopartículas Metálicas/toxicidade , Ciclo do Nitrogênio/efeitos dos fármacos , Oxigênio/química , Fósforo/química , Poluentes Químicos da Água/toxicidade , Fenômenos Ecológicos e Ambientais , Ecossistema , Ferro/química , Ferro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas , Nitratos/química , Rios/química , Prata/química , Prata/toxicidade , Água
8.
Environ Sci Technol ; 49(14): 8441-50, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26061763

RESUMO

Silver nanoparticles (AgNPs) are currently the most commonly used nanoparticles in consumer products, yet their environmental fate in natural waters is poorly understood. In the present study, we investigated the persistence, transformations and distribution of polyvinylpyrrolidone (PVP) and citrate (CT) coated AgNPs in boreal lake mesocosms dosed either with a 6-week chronic regimen or a one-time pulse treatment at environmentally relevant dosing levels. In the chronic treatments, total Ag (TAg) concentrations reached ∼40% of target concentrations by the end of the experiment, and in the pulsed mesocosms, TAg dissipated slowly, with a half-life of ∼20 days. Sediments and periphyton on the mesocosm walls were an important sink for Ag. We found little effect of AgNP loading and surface coating on the persistence of TAg. There were also no differences between treatments in the degree of agglomeration of AgNPs, as indicated by the accumulation and distribution of Ag in the particulate and colloidal fractions. The low ionic strength and relatively high dissolved organic carbon concentrations in the lake water likely contributed to the relative stability of AgNP in the water column. The low concentrations of dissolved Ag (<1 µg L(-1)) in the size fraction <3 kDaA reflect the importance of natural ligands in controlling the concentrations of Ag released by dissolution of AgNPs. Overall, these data indicate that AgNPs are relatively stable in the tested lake environment and appear to result in quantities of highly toxic ionic Ag(+) that are below our limit of detection.


Assuntos
Ecossistema , Lagos/química , Nanopartículas Metálicas/análise , Prata , Poluentes Químicos da Água/análise , Citratos/química , Corantes , Sedimentos Geológicos/análise , Meia-Vida , Lagos/análise , Nanopartículas Metálicas/toxicidade , Ontário , Concentração Osmolar , Povidona/análise , Povidona/química , Prata/análise , Prata/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Environ Sci Technol ; 48(8): 4573-80, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628458

RESUMO

Increasing amounts of silver nanoparticles (AgNPs) are expected to enter the aquatic ecosystems where their effects on natural phytoplankton communities are poorly understood. We investigated the effects of AgNPs and its interactions with phosphorus (P) supply on the growth kinetics and stoichiometry of natural phytoplankton. Lake water was dosed with AgNPs (carboxy-functionalized capping agent; ∼10-nm particle size; ∼20% Ag w/w) at four different concentrations and five P concentrations and incubated in situ for 3 days. A treatment with ionic silver (AgNO3) was used as a positive control. We found that growth rates, calculated from changes in seston carbon and chlorophyll, responded significantly and interactively (p < 0.0001) to both AgNPs and P. AgNPs reduced the maximum phytoplankton growth rates by 11-85%. In the positive control, no or very little growth was observed. Inhibition of growth rates after exposure to Ag might be related to the reduction in chlorophyll and the inhibition of C and N acquisition rather than P uptake mechanisms. AgNPs, P supply and their interactions also significantly (p < 0.0001) reduced sestonic C:P and N:P ratios and increased C:N, C:Chl and cell-bound Ag stoichiometry. Our results indicate that fate and toxicity of AgNP will vary with phosphorus pollution level in aquatic ecosystems.


Assuntos
Nanopartículas Metálicas/toxicidade , Fósforo/química , Fósforo/farmacologia , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Água/química , Carbono/análise , Clorofila/metabolismo , Nanopartículas Metálicas/química , Nitrogênio/análise , Ontário , Fósforo/metabolismo , Fitoplâncton/citologia , Análise de Regressão , Prata/química , Poluentes Químicos da Água/química
10.
Ecol Lett ; 16(9): 1115-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23848507

RESUMO

The linkages between biological communities and ecosystem function remain poorly understood along gradients of human-induced stressors. We examined how resource provisioning (nutrient recycling), mediated by native freshwater mussels, influences the structure and function of benthic communities by combining observational data and a field experiment. We compared the following: (1) elemental and community composition (algal pigments and macroinvertebates) on live mussel shells and on nearby rocks across a gradient of catchment agriculture and (2) experimental colonisation of benthic communities on live vs. sham shells controlling for initial community composition and colonisation duration. We show that in near pristine systems, nutrient heterogeneity mediated by mussels relates to greater biodiversity of communities, which supports the notion that resource heterogeneity can foster biological diversity. However, with increased nutrients from the catchment, the relevance of mussel-provisioned nutrients was nearly eliminated. While species can persist in disturbed systems, their functional relevance may be diminished or lost.


Assuntos
Agricultura , Bivalves/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Animais , Modelos Biológicos , Nitrogênio/química , Nitrogênio/toxicidade , Ontário , Fósforo/química , Fósforo/toxicidade , Análise de Componente Principal , Rios , Poluentes Químicos da Água/toxicidade
11.
Ecol Appl ; 23(6): 1384-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24147410

RESUMO

Urban stormwater ponds are considered to be a best management practice for flood control and the protection of downstream aquatic ecosystems from excess suspended solids and other contaminants. Following this, urban ponds are assumed to operate as unreactive settling basins, whereby their overall effectiveness in water treatment is strictly controlled by physical processes. However, pelagic microbial biogeochemical dynamics could be significant contributors to nutrient and carbon cycling in these small, constructed aquatic systems. In the present study, we examined pelagic biogeochemical dynamics in 26 stormwater ponds located in southern Ontario, Canada, during late summer. Initially, we tested to see if total suspended solids (TSS) concentration, which provides a measure of catchment disturbance, landscape stability, and pond performance, could be used as an indirect predictor of plankton stocks in stormwater ponds. Structural equation modeling (SEM) using TSS as a surrogate for external loading suggested that TSS was an imperfect predictor. TSS masked plankton-nutrient relationships and appeared to reflect autochthonous production moreso than external forces. When TSS was excluded, the SEM model explained a large amount of the variation in dissolved organic matter (DOM) characteristics (55-75%) but a small amount of the variation in plankton stocks (3-38%). Plankton stocks were correlated positively with particulate nutrients and extracellular enzyme activities, suggesting rapid recycling of the fixed nutrient and carbon pool with consequential effects on DOM. DOM characteristics across the ponds were mainly of autochthonous origin. Humic matter from the watershed formed a larger part of the DOM pool only in ponds with low productivity and low dissolved organic carbon concentrations. Our results suggest that in these small, high nutrient systems internal processes might outweigh the impact of the landscape on carbon cycles. Hence, the overall benefit that constructed ponds serve to protect downstream environments must be weighed with the biogeochemical processes that take place within the water body, which could offset pond water quality gains by supporting intense microbial metabolism. Finally, TSS did not provide a useful indication of stormwater pond biogeochemistry and was biased by autochthonous production, which could lead to erroneous TSS-based management conclusions regarding pond performance.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Lagoas/química , Água/química , Plâncton/fisiologia
12.
J Environ Manage ; 127: 317-23, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23810965

RESUMO

Ponds that collect and process stormwater have become a prominent feature of urban landscapes, especially in areas recently converted to residential land use in North America. Given their increasing number and their tight hydrological connection to residential catchments, these small aquatic ecosystems could play an important role in urban biogeochemistry. However, some physicochemical aspects of urban ponds remain poorly studied. Here we assessed the frequency and strength of water column stratification, using measurements of vertical water temperature profiles at high spatial and temporal frequency, in 10 shallow urban stormwater management ponds in southern Ontario, Canada. Many of the ponds were well stratified during much of the summer of 2010 as indicated by relatively high estimates of thermal resistance to mixing (RTRM) indices. Patterns of stratification reflected local weather conditions but also varied among ponds depending on their morphometric characteristics such as maximum water depth and surface area to perimeter ratio. We found greater vertical nutrient gradients and more phosphorus accumulation in bottom waters in ponds with strong and persistent stratification, which likely results from limited particle resuspension and more dissolved phosphorus (P) release from sediments. However, subsequent mixing events in the fall diminished vertical P gradients and possibly accelerated internal loading from the sediment-water interface. Our results demonstrate that stormwater ponds can experience unexpectedly long and strong thermal stratification despite their small size and shallow water depth. Strong thermal stratification and episodic mixing in ponds likely alter the quantity and timing of internal nutrient loading, and hence affect water quality and aquatic communities in downstream receiving waters.


Assuntos
Lagoas/química , Temperatura , Ontário , Movimentos da Água , Qualidade da Água
13.
Bull Environ Contam Toxicol ; 91(1): 76-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23708262

RESUMO

The purpose of this study was to investigate the 48 h acute toxicity of capped silver nanoparticles (AgNPs), and capped and uncapped titanium dioxide (nTiO2) to Daphnia magna neonates. In addition, a 24 days chronic toxicity study was performed for D. magna exposed to uncapped nTiO2 to evaluate effects on growth, reproduction and survival. The 48 h median lethal concentrations (LC50) for carboxy-functionalized capped AgNPs and uncapped nTiO2 were 2.75 µg/L and 7.75 mg/L, respectively. In contrast, no mortalities were observed for Daphnia exposed to carboxy-functionalized capped nTiO2 at concentrations up to 30 mg/L. In the chronic toxicity experiment with uncapped nTiO2, the growth, reproduction and survival of D. magna were significantly (p < 0.05) reduced at concentrations ranging from 4.5 to 7.5 mg/L. Growth and reproduction were reduced by 35 % and 93 %, respectively in the treatments at the highest uncapped nTiO2 concentration (7.5 mg/L). Time to first reproduction was delayed by 2-3 days in D. magna and the test organisms produced only 1-2 broods over 24 days exposure to the highest concentration of uncapped nTiO2. Overall, the results from the present study indicate that exposures of aquatic invertebrates to nanoparticles could have important ecological effects on lower trophic levels in aquatic ecosystems.


Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Fungicidas Industriais/toxicidade , Longevidade , Reprodução , Protetores Solares/toxicidade , Suspensões/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
14.
Biogeochemistry ; 163(3): 245-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155460

RESUMO

River-to-lake transitional areas are biogeochemically active ecosystems that can alter the amount and composition of dissolved organic matter (DOM) as it moves through the aquatic continuum. However, few studies have directly measured carbon processing and assessed the carbon budget of freshwater rivermouths. We compiled measurements of dissolved organic carbon (DOC) and DOM in several water column (light and dark) and sediment incubation experiments conducted in the mouth of the Fox river (Fox rivermouth) upstream from Green Bay, Lake Michigan. Despite variation in the direction of DOC fluxes from sediments, we found that the Fox rivermouth was a net sink of DOC where water column DOC mineralization outweighed the release of DOC from sediments at the rivermouth scale. Although we found DOM composition also changed during our experiments, alterations in DOM optical properties were largely independent of the direction of sediment DOC fluxes. We found a consistent decrease in humic-like and fulvic-like terrestrial DOM and a consistent increase in the overall microbial composition of rivermouth DOM during our incubations. Moreover, greater ambient total dissolved phosphorus concentrations were positively associated with the consumption of terrestrial humic-like, microbial protein-like, and more recently derived DOM but had no effect on bulk DOC in the water column. Unexplained variation indicates that other environmental controls and water column processes affect the processing of DOM in this rivermouth. Nonetheless, the Fox rivermouth appears capable of substantial DOM transformation with implications for the composition of DOM entering Lake Michigan. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-022-01000-z.

15.
Environ Sci Technol ; 46(16): 9120-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22834484

RESUMO

Silver nanoparticles (AgNPs) are widely used in commercial products as antibacterial agents, but AgNPs might be hazardous to the environment and natural aquatic bacterial communities. Our recent research demonstrated that AgNPs rapidly but temporarily inhibited natural bacterioplankton production. The current study investigates the mechanism for the observed bacterial reaction to AgNPs by examining how AgNPs impact bacterial abundance, metabolic activity (5-cyano-2,3-ditolyl tetrazolium chloride (CTC+) cells), and 16S rRNA community composition. Natural bacterioplankton communities were dosed with carboxy-functionalized AgNPs at four concentrations (0.01-1 mg-Ag/L), incubated in triplicate, and monitored over 5 days. Ionic silver (AgNO(3)) and Milli-Q water treatments were used as a positive and negative control, respectively. Four general AgNP exposure responses, relative to the negative control, were observed: (1) intolerant, (2) impacted but recovering, (3) tolerant, and (4) stimulated phylotypes. Relationships between cell activity indicators and bacterial phylotypes, suggested that tolerant and recovering bacteria contributed the most to the community's productivity and rare bacteria phylotypes stimulated by AgNPs did not appear to contribute much to cell activity. Overall, natural bacterial communities tolerated single, low level AgNP doses and had similar activity levels to the negative control within five days of exposure, but bacterial community composition was different from that of the control.


Assuntos
Bactérias/classificação , Nanopartículas Metálicas , Prata/química , Microbiologia da Água , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Reação em Cadeia da Polimerase
16.
Environ Sci Technol ; 45(12): 5272-8, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21574555

RESUMO

Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO2 is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.


Assuntos
Ingestão de Líquidos/fisiologia , Monitoramento Ambiental , Extinção Biológica , Peixes/fisiologia , Água Doce , Efeito Estufa , Animais , Humanos , Rios
17.
Front Microbiol ; 11: 568629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304327

RESUMO

In aquatic ecosystems, dissolved organic matter (DOM) composition is driven by land use, microbial activity, and seasonal variation in hydrology and water temperature, and, in turn, its microbial bioavailability is expected to vary due to differences in its composition. It is commonly assumed that DOM of terrestrial origin is resistant to microbial activity because it is composed of more complex aromatic compounds. However, the effect of DOM sources on the microbial reworking and degradation of the DOM pool remains debated. We performed laboratory incubation experiments to examine how temporal changes in DOM composition influence its microbial biodegradability in two contrasting streams (agricultural and forested) in southern Ontario, Canada. Despite a more allochthonous-like DOM signature in the forest stream and a more autochthonous-like DOM signature in the agriculture stream, we found that biodegradation and production of DOC were the same in both streams and synchronous throughout the sampling period. However, the initial DOM composition impacted how the DOM pool changed upon degradation. During the incubations, both autochthonous-like and allochthonous-like fractions of the DOM pool increased. We also found that a greater change in DOM composition during the incubations induced higher degradation of carbon. Finally, temporal variation in DOC biodegradation and production over time or across streams was not related to DOM composition, although there was a significant relationship between BDOC and nutrient concentrations in the agriculture stream. This observation potentially challenges the notion that DOM origin predicts its bioavailability and suggests that broad environmental factors shape DOC consumption and production in aquatic ecosystems. More research is needed to better understand the drivers of microbial biodegradability in streams, as this ultimately determines the fate of DOM in aquatic ecosystems.

18.
Sci Rep ; 9(1): 3878, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846827

RESUMO

Human activities can alter aquatic ecosystems through the input of nutrients and carbon, but there is increasing evidence that these pressures induce nonlinear ecological responses. Nonlinear relationships can contain breakpoints where there is an unexpected change in an ecological response to an environmental driver, which may result in ecological regime shifts. We investigated the occurrence of nonlinearity and breakpoints in relationships between total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and total dissolved carbon (DOC) concentrations and ecological responses in streams with varying land uses. We calculated breakpoints using piecewise regression, two dimensional Kolmogorov-Smirnov (2DKS), and significant zero crossings (SiZer) methods. We found nonlinearity was common, occurring in half of all analyses, with some evidence of multiple breakpoints. Linearity, by contrast, occurred in less than 14% of cases, on average. Breakpoints were related to land use gradients, with 34-43% agricultural cover associated with DOC and TDN breakpoints, and 15% wetland and 9.5% urban land associated with DOC and nutrient breakpoints, respectively. While these breakpoints are likely specific to our study area, our study contributes to the growing literature of the prevalence and location of ecological breakpoints in streams, providing watershed managers potential criteria for catchment land use thresholds.

19.
PLoS One ; 13(8): e0201412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110351

RESUMO

Studies of the fate and toxicity of nanoparticles, including nanosilver (AgNPs), have been primarily conducted using bench scale studies over relatively short periods of time. To better understand the fate of AgNPs in natural aquatic ecosystems over longer time scales and ecological settings, we released suspensions of AgNPs (30-50 nm, capped with polyvinylpyrrolidone) into a boreal lake at the Experimental Lakes Area in Canada. Approximately 9 kg of silver was added from a shoreline point source from June to October 2014, which resulted in total Ag (TAg) concentrations of about 10 µg L-1 or less. In addition, dissolved Ag concentrations (DAg) were typically very low. Using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) analysis of grab samples, we found that the nanoparticles typically ranged in the 40-60 nm size class and were widely distributed throughout the lake, while larger aggregates (i.e. >100 nm) were infrequently detected. The highest occurrence of aggregates was found near the addition site; however, size distributions did not vary significantly among spatial locations or time suggesting rapid dispersal upon entry into the lake. Lake stratification at the thermocline was not a barrier to mobility of the AgNPs, as the particles were also detected in the hypolimnion. Environmental factors influenced Ag size distributions over sampling locations and time. Total dissolved phosphorus, bacterioplankton chlorophyll-a, and sampling time strongly correlated with aggregation and dissolution dynamics. AgNPs thus appear to be relatively mobile and persistent over the growing season in lake ecosystems.


Assuntos
Lagos/química , Nanopartículas Metálicas/química , Prata/química , Canadá
20.
PLoS One ; 13(7): e0200312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979760

RESUMO

Stable carbon (13C) and nitrogen isotopes (15N) are useful tools in determining the presence of agricultural influences in freshwater ecosystems. Here we examined δ15N and δ13C signatures in nitrate, fish, and mussel tissues, from rivers in Southern Ontario, Canada, that vary in their catchment proportion of agriculture land use, nutrients and organic matter quality. We found comparatively 15N-enriched δ15N values in animal tissues and dissolved nitrates, relative to expected values characterized by natural sources. We also observed a strong, positive correlation between riparian agriculture percentages and δ15N values in animal tissues and nitrates, indicating a significant influence of agricultural land use and the probable dominance of organic fertilizer and manure inputs in particular. The use of a 15N-based equation for the estimation of fish trophic position confirmed dietary analyses is showing all fish species to be tertiary consumers, with a relatively consistent 15N-enrichment in animal tissues between trophic levels. This indicates that variability in 15N-trophic fractionation is minor, and that fish and mussel tissue δ15N values are largely representative of source nitrogen. However, the trophic fractionation value varied from accepted literature values, suggesting strong influences from either local environmental conditions or dietary variation. The δ13C datasets did not correlate with riparian agriculture, and animal δ13C signatures in their tissues are consistent with terrestrial C3 vegetation, suggesting the dominance of allochthonous DOC sources. We found that changes in water chemistry and dissolved organic matter quality brought about by agricultural inputs were clearly expressed in the δ15N signatures of animal tissues from all trophic levels. As such, this study confirmed the source of anthropogenic nitrogen in the studied watersheds, and demonstrated that this agriculturally-derived nitrogen could be traced with δ15N signatures through successive trophic levels in local aquatic food webs. The δ13C data was less diagnostic of local agriculture, due to the more complex interplay of carbon cycling and environmental conditions.


Assuntos
Agricultura , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Rios/química , Animais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa