Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375399

RESUMO

Imidazole-based compounds are a series of heterocyclic compounds that exhibit a wide range of biological and pharmaceutical activities. However, those extant syntheses using conventional protocols can be time-costly, require harsh conditions, and result in low yields. As a novel and green technique, sonochemistry has emerged as a promising method for organic synthesis with several advantages over conventional methods, including enhancing reaction rates, improving yields, and reducing the use of hazardous solvents. Contemporarily, a growing body of ultrasound-assisted reactions have been applied in the preparation of imidazole derivatives, which demonstrated greater benefits and provided a new strategy. Herein, we introduce the brief history of sonochemistry and focus on the discussion of the multifarious approaches for the synthesis of imidazole-based compounds under ultrasonic irradiation and its advantages in comparison with conventional protocols, including typical name-reactions and various sorts of catalysts in those reactions.

2.
BMC Plant Biol ; 22(1): 126, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35300590

RESUMO

The freeze-thaw of early spring in China's Qinghai-Tibet Plateau is often accompanied by severe droughts. Artemisia annua, widely distributed in China, releases allelopathic substances, mainly artemisinin, to the environment and exerts a wide range of effects on crops. This paper studied the physiological effects of highland barley under freeze-thaw, drought, and artemisinin stress through indoor simulation experiments. The physiological response characteristics of superoxide dismutase (SOD) activity, catalase (POD) activity, net photosynthetic rate, relative water content (RWC), relative electrical conductivity, malondialdehyde (MDA) content, and soluble protein content in highland barley were analyzed. The results showed that artemisinin and drought contributed to the increase of SOD activity and the decrease of POD activity. Under the freeze-thaw stress, the SOD and POD activities both decreased firstly and then increased, but the effect of compound stress on POD was more complicated. Either artemisinin, drought, or low temperature could reduce the net photosynthetic rate of highland barley. Low temperature had more significant impacts on photosynthesis, and compound stress would show a single stress superimposed effect. Artemisinin, drought, and low temperature could reduce the RWC of highland barley, and increase the relative electrical conductivity and the concentration of soluble protein (except for low temperature stress above zero, which reduces the concentration of soluble protein). However, the effect of compound stress on soluble protein is more complex. The single stress of artemisinin and drought had no obvious effect on MDA content, while the MDA content was increased significantly under the freeze-thaw stress and the compound stress of artemisinin and drought, and the MDA content reached its peak at T1. The results are helpful to explore the effects of freeze-thaw, drought and artemisinin stress on the growth of highland barley under the background of the aridification of the Qinghai-Tibet Plateau, and provide ideas for rational agricultural management.


Assuntos
Artemisininas , Hordeum , Secas , Congelamento , Fotossíntese
3.
BMC Plant Biol ; 21(1): 451, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615488

RESUMO

BACKGROUND: As a biennial plant, Secale cereale L is usually harvested in the autumn in the northern part of China where the temperature difference between day and night is of great disparity Through the pot experiment, the seedlings were cut to 2, 6 and 10 cm stubble height, and the simulated freeze-thaw (FT) stress (10/- 5 °C) was carried out after 6 days regrowth. The physiological effects of FT with different stubble height were revealed by analyzing the relative water content (RWC), osmotic adjustment substance concentration (soluble sugar and protein), membrane peroxidation (MDA) and catalase (CAT) activity. RESULTS: The results demonstrated that under freeze stress (- 5 °C), the content of soluble protein and MDA decreased and the seedlings of 2 cm treatment kept higher level of soluble protein and MDA, while the seedlings of 6 and 10 cm treatments kept higher level of the RWC, soluble sugar content, and CAT activity. After FT stress, the content of soluble sugar and protein, RWC in the 6 cm treatment were higher than those in 2 cm and 10 cm treatments, and the CAT activity in 10 cm treatment was the highest while the MDA content is lower. CONCLUSION: These data suggest that keeping high stubble height is more adaptive for short-term FT stress.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Desidratação , Congelamento , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Secale/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Absorção Fisiológica , China , Pressão Osmótica
4.
Bull Entomol Res ; : 1-11, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34588009

RESUMO

The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive pest that causes damage to rice crops worldwide. The olfactory system is critical for host or mate location by weevils, but only limited information about the molecular mechanism of olfaction-related behaviour has been reported in this insect. In this study, we conducted SMRT-seq transcriptome analysis and obtained 54,378 transcripts, 38,706 of which were annotated. Based on these annotations, we identified 40 candidate chemosensory genes, including 31 odorant-binding proteins (OBPs), six chemosensory proteins (CSPs) and three sensory neuron membrane proteins (SNMPs). Phylogenetic analysis showed that LoryOBPs, LoryCSPs and LorySNMPs were distributed in various clades. The results of tissue expression patterns indicated that LoryOBPs were highly abundant in the antennae, whereas LoryCSPs were highly abundant not only in the antennae but also in the abdomen, head and wings. Our findings substantially expand the gene database of L. oryzophilus and may serve as a basis for identifying novel targets to disrupt key olfactory genes, potentially providing an eco-friendly strategy to control this pest in the future.

5.
Mol Ecol ; 29(19): 3795-3808, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681685

RESUMO

Migratory insects are capable of actively sustaining powered flight for several hours. This extraordinary phenomenon requires a highly efficient transport system to cope with the energetic demands placed on the flight muscles. Here, we provide evidence that the role of the hydrophobic ligand binding of odorant binding proteins (OBPs) extends beyond their typical function in the olfactory system to support insect flight activity via lipid interactions. Transcriptomic and candidate gene analyses show that two phylogenetically clustered OBPs (OBP3/OBP6) are consistently over-expressed in adult moths of the migrant Old-World bollworm, Helicoverpa armigera, displaying sustained flight performance in flight activity bioassays. Tissue-specific over-expression of OBP6 was observed in the antennae, wings and thorax in long-fliers of H. armigera. Transgenic Drosophila flies over-expressing an H. armigera transcript of OBP6 (HarmOBP6) in the flight muscle attained higher flight speeds on a modified tethered flight system. Quantification of lipid molecules using mass spectrometry showed a depletion of triacylglyerol and phospholipids in flown moths. Protein homology models built from the crystal structure of a fatty acid carrier protein identified the binding site of OBP3 and OBP6 for hydrophobic ligand binding with both proteins exhibiting a stronger average binding affinity with triacylglycerols and phospholipids compared with other groups of ligands. We propose that HarmOBP3 and HarmOBP6 contribute to the flight capacity of a globally invasive and highly migratory noctuid moth, and in doing so, extend the function of this group of proteins beyond their typical role as chemosensory proteins in insects.


Assuntos
Mariposas , Receptores Odorantes , Animais , Proteínas de Transporte/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Odorantes , Receptores Odorantes/genética , Transcriptoma
6.
Genome ; 63(1): 1-12, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31533014

RESUMO

The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.


Assuntos
Besouros/fisiologia , Herbivoria/genética , Zea mays/genética , Animais , Besouros/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Larva/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Zea mays/metabolismo
7.
Pestic Biochem Physiol ; 149: 1-7, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30033005

RESUMO

Cytochrome P450 monooxygenases represent a key detoxification mechanism in neonicotinoids resistance in Aphis gossypii Glover. Synergism analysis has indicates that P450s are involved in thiamethoxam resistance. In this study, expression changes in the transcripts of P450 genes were determined in thiamethoxam-susceptible and thiamethoxam-resistant strains. Nine P450 genes in CYP3 clade were significantly overexpressed in the resistant strain (especially CYP6CY14, which was increased 17.67-fold) compared with the susceptible strain. Transcripts of ecdysone synthesis-related P450 genes, including CYP302A1, CYP306A1, CYP307A1 and CYP315A1, were up-regulated in the resistant strain, which may accelerate molting hormone production. The ecdysone response genes (ecdysone receptor (EcR), ultra-spiracle (USP) and Broad-complex protein (Br-C)) were overexpressed in the resistant strain. RNA interference (RNAi) targeting CYP6CY14 significantly increased the sensitivity of the resistant aphid to thiamethoxam. The results of the present study indicate the possible involvement of these P450 genes in thiamethoxam resistance. Our findings may facilitate further work to validate the roles of these P450s in thiamethoxam resistance based on heterologous expression, and show that screening the expression changes in P450 genes can reveal the impact of thiamethoxam on ecdysone synthesis-related P450 genes. These results are useful for understanding the mechanism of thiamethoxam resistance and will contribute to the management of insecticide-resistant cotton aphids in China.


Assuntos
Afídeos/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Tiazóis/farmacologia , Sequência de Aminoácidos , Animais , Afídeos/enzimologia , Afídeos/genética , China , Sistema Enzimático do Citocromo P-450/química , Resistência a Inseticidas/genética , Homologia de Sequência de Aminoácidos , Tiametoxam , Regulação para Cima/efeitos dos fármacos
8.
Pestic Biochem Physiol ; 148: 182-189, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891371

RESUMO

The cytochrome P450 monooxygenases play a key role in detoxification mechanism for spirotetramat resistance in Aphis gossypii Glover. However, only one P450 genes (CYP6DA2), among thirty-five P450 genes identified from Aphis gossypii transcriptome database, has been reported to play important role in spirotetramat resistance in previous resistance level until now. In this study, after the confirmation of the rise of resistance level and important roles of P450s in spirotetramat resistance by the synergism analysis, the gene expression changes were determined for P450 genes in spirotetramat susceptible and resistant strains. Compared with the susceptible strain, CYP6CY4, CYP6CY14, CYP6CY18 and CYP6DC1 in CYP3 Clade were up-regulated in resistant nymphs, with the CYP6CY14, CYP6CY4, CYP6DC1, and CYP6CY18 increased to 2.54-, 1.51-, 1.31- and 1.29-fold, respectively. Eight genes in CYP3 Clade, three genes in CYP4 Clade and one gene in Mito Clade were down-regulated. In resistant adult aphids, CYP380C6 in CYP4 Clade, CYP353B1 in CYP2 Clade, and CYP307A1 in Mito Clade were up-regulated under spirotetramat stress, with the CYP380C6, CYP353B1 and CYP307A1 increased to 2.89-, 1.91-, and 1.38-fold, respectively. In contrast, the other P450 genes were almost down-regulated, especially these P450 genes in CYP3 Clade, CYP4 Clade and Mito Clade. RNA interference of CYP380C6 significantly increased the sensitivity of the resistant adults and nymphs to spirotetramat, while suppression of CYP6CY14 could not increase the toxicity of spirotetramat. These results indicate the possible involvement of the CYP380C6 genes in spirotetramat resistance at present very high resistance levels. Screening the expression changes of P450 genes under different spirotetramat resistance levels in the genome-scale will provide an overall view on the possible metabolic factors in the resistance development. The results may facilitate further work to validate the roles of P450 in spirotetramat resistance with heterologous expression.


Assuntos
Afídeos/efeitos dos fármacos , Compostos Aza/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Compostos de Espiro/toxicidade , Sequência de Aminoácidos , Animais , Afídeos/enzimologia , Afídeos/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Regulação para Cima/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-28042896

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that play posttranscriptional, regulatory roles in various biological processes. However, there has been limited investigation into the potential function of miRNAs in olfaction. The coleopteran Holotrichia parallela is an economically important pest, and miRNAs have been identified in only one coleopteran (Tribolium castaneum). Therefore, this study was conducted to identify miRNAs expressed in the antennae of H. parallela and obtain insights into their possible roles in olfaction. By combining deep sequencing and miRDeep2 software, a total of 99 miRNAs, including 76 conserved miRNAs and 23 novel miRNAs, were identified from H. parallela antennae. The 76 conserved miRNAs belong to 63 families and the other 23 may be species specific or tissue specific. The identified miRNAs have many conserved features of miRNAs. Evaluation of the conservation of the identified miRNA families across different species revealed that most of the families are insect specific. The prediction and annotation of targets suggested that 13 of the identified miRNAs participate in olfactory regulation. Gender differences in antennal expression of nine of the olfactory-related miRNAs were confirmed by quantitative real-time PCR.


Assuntos
Besouros/fisiologia , Expressão Gênica , MicroRNAs/genética , Percepção Olfatória/genética , Animais , Antenas de Artrópodes/fisiologia , Besouros/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
10.
Cryobiology ; 74: 68-76, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27908684

RESUMO

MicroRNAs (miRNAs) are important regulators of various biological processes in organisms. Insects subjected to abiotic stress can regulate gene expression post-transcriptionally through the use of microRNAs. However, the role of miRNAs in response to cold stress in Lissorhoptrus oryzophilus Kuschel remains unknown. The rice water weevil, L. oryzophilus, is an invasive insect that is able to survive cold winters. To characterize changes in miRNAs in response to overwintering in L. oryzophilus, a comprehensive comparative analysis of microRNAs was performed involving an overwintering and a normal adult. High-throughput Illumina sequencing and bioinformatics analyses revealed 121 conserved and 14 potential novel microRNAs in two small libraries. The novel miRNAs exhibit low expression levels in both libraries. After the expression profiles of the miRNAs in the two libraries were normalized, 36 miRNAs in L. oryzophilus were found to be differentially expressed in response to overwintering. In particular, 14 conserved miRNAs and 6 novel miRNAs were up-regulated, while 15 conserved miRNAs and 1 novel miRNA were down-regulated. In addition, the expression patterns of 11 conserved and potentially novel miRNAs were confirmed by quantitative RT-PCR analysis. Most importantly, this work provides a unique resource of characterized miRNAs for overwintering L. oryzophilus and contributes to studies of the functions of cold-related and other L. oryzophilus miRNAs.


Assuntos
Resposta ao Choque Frio/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Gorgulhos/genética , Animais , Sequência de Bases , Temperatura Baixa , Biblioteca Gênica , Estações do Ano , Análise de Sequência de RNA , Regulação para Cima
11.
Pestic Biochem Physiol ; 138: 91-96, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28456311

RESUMO

A thiamethoxam-resistant strain of cotton aphid (ThR) displayed a 13.79-fold greater resistance to thiamethoxam than a susceptible cotton aphid (SS) strain. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) synergistically increased the toxicity of thiamethoxam in the resistant strain, whereas diethyl maleate (DEM) did not exhibit significant synergistic effects. Bioassay results indicated that the ThR strain developed increased levels of cross-resistance to bifenthrin (11.71 fold), cyfluthrin (17.90 fold), esfenvalerate (6.85 fold), clothianidin (6.56 fold), methidathion (5.34 fold) and alpha-cypermethrin (4.53 fold) but did not show cross-resistance to malathion, omethoate, acephate, chlorpyrifos, methomyl, sulfoxaflor or imidacloprid. PBO and TPP increased bifenthrin toxicity in the resistant strain by 2.38 and 4.55 fold, respectively. Quantitative real-time PCR results indicated that the mRNA expression levels of the α1, α4-1, α4-2, α5 and α7 subunits decreased significantly by 3.32, 1.60, 2.05, 5.41 and 1.48 fold, respectively, in the resistant strain compared with those in the susceptible strain. However, significant differences were not observed in the expression of the α2, α3 and ß1 subunits. No target-site mutations within the α1, α2 and ß1 subunits of nicotinic acetylcholine receptors (nAChRs) were detectable in the ThR strain. In conclusion, the levels of thiamethoxam resistance and cross-resistance to other insecticides observed in the ThR strain are likely regulated by two mechanisms, which include the overexpression of detoxification-related P450s and esterase. These results should be useful for the understanding thiamethoxam resistance mechanism and the management of insecticide-resistant cotton aphids in China.


Assuntos
Afídeos/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Tiazóis/farmacologia , Animais , Piretrinas/farmacologia , Tiametoxam
12.
Arch Insect Biochem Physiol ; 92(4): 274-87, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27396371

RESUMO

To understand the olfactory mechanisms of Holotrichia parallela antennae in detecting volatile compounds in the environment, protein profiles of H. parallela antennae were analyzed using two-dimensional electrophoresis followed by mass spectrometry and bioinformatics analyses. Approximately 1,100 protein spots in silver staining gel were detected. Quantitative image analysis revealed that in total 47 protein spots showed significant changes in different genders of adult antennae. Thirty-five differentially expressed proteins were identified by Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF) tandem mass spectrometer, among which 65.7% are involved in carbohydrate and energy metabolism, antioxidant system, transport, and amino acid/nucleotide metabolism. Some proteins identified here have not been reported previously in insect antennae. Identified male-biased proteins included odorant-binding protein 4, pheromone-binding protein-related protein 2, odorant-binding protein 14, prophenoloxidase-I, acyl-CoA dehydrogenase, aldo-keto reductase-like, carbamoyl phosphate synthetase, etc. whereas some proteins are female biased, such as antennae-rich cytochrome P450, aldehyde dehydrogenase, and putative glutamine synthetase. Alterations in the levels of some proteins were further confirmed by real time polymerase chain reaction (RT-PCR). The proteomic resources displayed here are valuable for the discovery of proteins from H. parallela antennae.


Assuntos
Antenas de Artrópodes/metabolismo , Besouros/genética , Besouros/metabolismo , Proteínas de Insetos/genética , Proteoma/genética , Animais , Eletroforese em Gel Bidimensional , Feminino , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Masculino , Espectrometria de Massas , Feromônios/metabolismo , Proteoma/metabolismo
13.
Pestic Biochem Physiol ; 126: 64-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26778436

RESUMO

A laboratory-selected spirotetramat-resistant strain (SR) of cotton aphid developed 579-fold and 15-fold resistance to spirotetramat in adult aphids and 3rd instar nymphs, respectively, compared with a susceptible strain (SS) [26]. The SR strain developed high-level cross-resistance to alpha-cypermethrin and bifenthrin and very low or no cross-resistance to the other tested insecticides. Synergist piperonyl butoxide (PBO) dramatically increased the toxicity of spirotetramat and alpha-cypermethrin in the resistant strain. RT-qPCR results demonstrated that the transcriptional levels of CYP6A2 increased significantly in the SR strain compared with the SS strain, which was consistent with the transcriptome results [30]. The depletion of CYP6A2 transcripts by RNAi also significantly increased the sensitivity of the resistant aphid to spirotetramat and alpha-cypermethrin. These results indicate the possible involvement of CYP6A2 in spirotetramat resistance and alpha-cypermethrin cross-resistance in the cotton aphid. These together with other cross-resistance results have implications for the successful implementation of resistance management strategies for Aphis gossypii.


Assuntos
Afídeos/efeitos dos fármacos , Compostos Aza/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Inseticidas/toxicidade , Compostos de Espiro/toxicidade , Animais , Afídeos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência a Inseticidas/genética , Sinergistas de Praguicidas/toxicidade , Butóxido de Piperonila/toxicidade , Piretrinas/toxicidade , Interferência de RNA
14.
Arch Insect Biochem Physiol ; 90(4): 195-208, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26440752

RESUMO

Many insects in temperate regions overwinter in diapause. In these insects, one of the metabolic adaptations to cold stress is the synthesis of responsive proteins. Using proteomic analysis, an investigation aimed to a better understanding of the molecular adaptation mechanisms to cold stress was carried out in Ostrinia furnacalis larva. Proteins were extracted from the larval hemolymph collected from both control and overwintering larva. By polyethylene glycol precipitation, approximately 560 protein spots were separated and visualized on two-dimensional (2D) gels after silver staining. Eighteen protein spots were found to be upregulated in overwinter larval plasma in different patterns. As an initial work, 13 of these proteins were identified using MALDI TOF/TOF MS. The differentially overexpressed proteins include heat shock 70 kDa cognate protein, small heat shock protein (sHSP), putative aliphatic nitrilase, arginine kinase, phosphoglyceromutase, triosephosphateisomerase, and glutathione transferase. Alterations in the levels of these proteins were further confirmed by qPCR. This study is the first analysis of differentially expressed plasma proteins in O. furnacalis diapause larvae under extremely low temperature conditions and gives new insights into the acclimation mechanisms responsive to cold stress. Our results also support the idea that energy metabolism, alanine and proline metabolism, and antioxidative reaction act in the cold acclimation of O. furnacalis diapause larvae.


Assuntos
Proteínas Sanguíneas/metabolismo , Temperatura Baixa , Proteínas de Insetos/metabolismo , Mariposas/fisiologia , Proteoma/metabolismo , Aclimatação/fisiologia , Adaptação Fisiológica , Animais , Diapausa de Inseto , Hemolinfa/metabolismo , Larva/metabolismo , Larva/fisiologia , Mariposas/metabolismo
15.
Pestic Biochem Physiol ; 118: 77-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25752434

RESUMO

A resistant strain of the Aphis glycines Matsumura (CRR) has developed 76.67-fold resistance to lambda-cyhalothrin compared with the susceptible (CSS) strain. Synergists piperonyl butoxide (PBO), S,S,S-Tributyltrithiophosphate (DEF) and triphenyl phosphate (TPP) dramatically increased the toxicity of lambda-cyhalothrin to the resistant strain. Bioassay results indicated that the CRR strain had developed high levels of cross-resistance to chlorpyrifos (11.66-fold), acephate (8.20-fold), cypermethrin (53.24-fold), esfenvalerate (13.83-fold), cyfluthrin (9.64-fold), carbofuran (14.60-fold), methomyl (9.32-fold) and bifenthrin (4.81-fold), but did not have cross-resistance to chlorfenapyr, imidacloprid, diafenthiuron, abamectin. The transcriptional levels of CYP6A2-like, CYP6A14-like and cytochrome b-c1 complex subunit 9-like increased significantly in the resistant strain than that in the susceptible. Similar trend were observed in the transcripts and DNA copy number of CarE and E4 esterase. Overall, these results demonstrate that increased esterase hydrolysis activity, combined with elevated cytochrome P450 monooxygenase detoxicatication, plays an important role in the high levels of lambda-cyhalothrin resistance and can cause cross-resistance to other insecticides in the CRR strain.


Assuntos
Afídeos/efeitos dos fármacos , Afídeos/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Esterases/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Afídeos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/metabolismo , Proteínas de Insetos/metabolismo
16.
Pestic Biochem Physiol ; 119: 74-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25868820

RESUMO

Spirotetramat were now widely used for control insecticides resistant aphids since 2011 in China. In order to elucidate the possible resistance mechanism, a laboratory selected resistant strain (SR) of cotton aphid was established with a 578.93-fold and 14.91-fold resistance ratio to spirotetramat for adult aphids and nymph, respectively, as compared with the susceptible strain (SS). In this study, a comparative proteomic analysis between SR and SS strains were conducted aims to better understand the resistant cotton aphids' spirotetramat tolerance mechanism. Approximately 493 protein spots were detected in the two-dimension polyacrylamide gel electrophoresis (2-DE). The intensities of 35 protein spots significantly changed, showing differences more than 2-fold in the SR strain compared with that in the SS strain. Of these spots, 20 protein spots were more abundant in the SR strain and 15 protein spots were more abundant in the SS strain. Twenty six differently expressed proteins were identified and categorized into several functional groups including carbohydrate and energy metabolism, antioxidant system, protein folding, amino acid metabolism, secondary metabolism and cytoskeleton protein, etc. Among these proteins, the acetyl-coA carboxylase (ACC), heat shock protein 70, ubiquitin-conjugating enzyme, fatty acid synthase, UDP-glucose 6-dehydrogenase, etc. are speculated confer the spirotetramat resistance in cotton aphids.


Assuntos
Afídeos/efeitos dos fármacos , Compostos Aza/farmacologia , Proteínas de Insetos/química , Resistência a Inseticidas , Inseticidas/farmacologia , Compostos de Espiro/farmacologia , Animais , Afídeos/química , Afídeos/genética , Afídeos/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Proteômica
17.
Pestic Biochem Physiol ; 124: 73-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26453233

RESUMO

A resistant strain of the cotton aphid (SR) developed 441.26-fold and 11.97-fold resistance to spirotetramat for adult aphids and nymphs, respectively, compared with the susceptible (SS) strain. Solexa sequencing technology was employed to identify differentially expressed genes (DEGs) in the spirotetramat-resistant cotton aphid. Respective totals of 22,430,522 and 21,317,732 clean reads were obtained from SR and SS cDNA libraries and assembled into 35,222 non-redundant (Nr) consensus sequences. A total of 14,913, 9,220, 7,922, 4,314 and 4,686 sequences were annotated using Nr, Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), respectively. Compared with the SS strain, the SR strain had 1287 significantly changed unigenes, of which 130 genes were up-regulated and 1157 genes were down-regulated (P ≤ 0.001). Among these genes, 440 unigenes were annotated, consisting of 114 up-regulated and 326 down-regulated genes. The expression levels of heat shock protein 70 (Hsp70) and UDP-glucuronosyltransferase were significantly up-regulated in the SR strain compared to the SS strain. The genes encoding cuticle proteins, salivary glue protein, fibroin heavy chain, energy ATP synthase, and cytochrome c oxidase were dramatically decreased. Among the DEGs, cytochrome P450 6A2 (c20965.graph_c0) was the only P450 gene up-regulated in the SR strain. The expression levels of 10 DEGs were confirmed by real-time qPCR, and the trends in gene expression observed by qPCR matched those of the Solexa expression profiles. The acetyl-CoA carboxylase (ACC) genes in the SR and SS libraries both contain four single nucleotide polymorphisms (SNPs), with three common SNPs: 1227 (C/T), 1811 (A/T: F/Y) and 3759 (C/T); however, 7540 (A/T) and 108 (G/A) occurred solely in the SS and SR strains, respectively.


Assuntos
Afídeos/efeitos dos fármacos , Afídeos/genética , Compostos Aza/toxicidade , Inseticidas/toxicidade , Compostos de Espiro/toxicidade , Animais , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
18.
Environ Toxicol ; 29(5): 526-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-22489048

RESUMO

Aphis gossypii (Glover) has been found to possess multiple mutations in the acetylcholinesterase (AChE) gene (Ace) that might involve target site insensitivity. In vitro functional expression of AChEs reveals that the resistant Ace1 (Ace1R) and Ace2 (Ace2R) were significantly less inhibited by eserine, omethoate, and malaoxon than the susceptible Ace1 (Ace1S) and Ace2 (Ace2S). Furthermore, in both the mutant and susceptible AChEs, Ace2 was significantly less sensitive to eserine, omethoate, and malaoxon than Ace1. These results suggested that both the mutant Ace1 and Ace2 were responsible for omethoate resistance, while the mutant Ace2 played a major role in insecticide resistance. The DNA copy number and transcription level of Ace2 were 1.52- and 1.88-fold higher in the ORR strain than in the OSS strain. Furthermore, the DNA copy number and transcription level of Ace2 were significantly higher than that of Ace1 in either OSS or ORR strains, demonstrating the involvement of Ace2 gene duplication in resistance. Thus, the authors conclude that omethoate resistance in cotton aphids appears to have evolved through a combination of multiple mutations and extensive Ace2R gene duplication.


Assuntos
Acetilcolinesterase/genética , Afídeos/genética , Duplicação Gênica , Resistência a Inseticidas/genética , Mutação , Acetilcolinesterase/metabolismo , Animais , Afídeos/enzimologia , Linhagem Celular , Variações do Número de Cópias de DNA , DNA Complementar/genética , Dimetoato/análogos & derivados , Malation/análogos & derivados , Fisostigmina , Análise de Sequência de DNA
19.
J Agric Food Chem ; 71(23): 8834-8845, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256355

RESUMO

Afidopyropen is a novel biogenic pesticide widely applied to control sap-feeding pests, and a few studies have evaluated the side effects of afidopyropen on pollinators, excluding the Asian honeybee. Thus, we estimated the physiological influences of afidopyropen in Apis cerana, which could cause significant death and nutritional deficiency in bees after continuous dietary intake (14 days) at the field recommended dose. Moreover, we found afidopyropen ingestion-induced changes in the activity of detoxification enzymes (AChE, GR, CarE) and expression of genes critical for the central nervous system and chemosensory function in the antennae, brain, midgut, and malpighian tubule of exposed bees. However, there was no evidence that there was a long-term impact on foraging activity when observing foragers treated with apfidopyropen as newly emerged workers. Overall, our study provides vital information to improve bee health, which will improve outcomes for beekeepers, increase pollination services, and strengthen pollinator communities.


Assuntos
Perfilação da Expressão Gênica , Inseticidas , Abelhas/genética , Animais , Inseticidas/toxicidade , Lactonas , Compostos Heterocíclicos de 4 ou mais Anéis
20.
Front Plant Sci ; 14: 1296915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259937

RESUMO

Plant volatile organic compounds (VOCs) are the key distress signals involved in tritrophic interactions, by which plants recruit predators to protect themselves from herbivores. However, the effect of nitrogen fertilization on VOCs that mediate tritrophic interactions remains largely unidentified. In this study, a maize (Zea mays)-aphid (Rhopalosiphum padi)-ladybird (Harmonia axyridis) tritrophic interaction model was constructed under high-nitrogen (HN) and low-nitrogen (LN) regimens. H. axyridis had a stronger tendency to be attracted by aphid-infested maize under HN conditions. Then, volatiles were collected and identified from maize leaves on which aphids had fed. All of the HN-induced volatiles (HNIVs) elicited an electroantennogram (EAG) response from H. axyridis. Of these HNIVs, 1-nonene was attractive to H. axyridis under simulated natural volatilization. Furthermore, our regression showed that the release of 1-nonene was positively correlated with H. axyridis visitation rates. Supplying 1-nonene to maize on which aphids had fed under LN enhanced attractiveness to H. axyridis. These results supported the conclusion that 1-nonene was the active compound that mediated the response to nitrogen in the tritrophic interaction. In addition, the 1-nonene synthesis pathway was hypothesized, and we found that the release of 1-nonene might be related to the presence of salicylic acid (SA) and abscisic acid (ABA). This research contributes to the development of novel environmentally friendly strategies to optimize nitrogen fertilizer application and to improve pest control in maize crops.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa