Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genomics ; 113(5): 3015-3029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182081

RESUMO

Small nucleolar RNAs (snoRNAs) are an important group of non-coding RNAs that have been reported to play a key role in the occurrence and development of various cancers. Here we demonstrate that Small nucleolar RNA 42 (SNORA42) enhanced the proliferation and migration of Oesophageal squamous carcinoma cells (ESCC) via the DHX9/p65 axis. Our results found that SNORA42 was significantly upregulated in ESCC cell lines, tissues and serum of ESCC patients. The high expression level of SNORA42 was positively correlated with malignant characteristics and over survival probability of patients with ESCC. Through in vitro and in vivo approaches, we demonstrated that knockdown of SNORA42 significantly impeded ESCC growth and metastasis whereas overexpression of SNORA42 got opposite effects. Mechanically, SNORA42 promoted DHX9 expression by attenuating DHX9 transports into the cytoplasm, to protect DHX9 from being ubiquitinated and degraded. From the KEGG analysis of Next-Generation Sequencing, the NF-κB pathway was one of the most regulated pathways by SNORA42. SNORA42 enhanced phosphorylation of p65 and this effect could be reversed by NF-κB inhibitor, BAY11-7082. Moreover, SNORA42 activated NF-κB signaling through promoting the transcriptional co-activator DHX9 interacted with p-p65, inducing NF-κB downstream gene expression. In summary, our study highlights the potential of SNORA42 is up-regulated in ESCC and promotes ESCC development partly via interacting with DHX9 and triggering the DHX9/p65 axis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/genética , Proteínas de Neoplasias/metabolismo , RNA Nucleolar Pequeno , Transdução de Sinais , Fator de Transcrição RelA
2.
Zoolog Sci ; 35(5): 411-420, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30298784

RESUMO

The fish genus Sinocyclocheilus contains many different species that inhabit diverse natural environments, such as surface water layer, cave, or intermediate. As a result of these different habitats there are some differences in their sensory systems. Microscopic and submicroscopic structures of olfactory systems in six representative species of Sinocyclocheilus were studied, including one surface-dwelling species (S. grahami), two intermediate species (S. jii and S. macrophthalmus) and three cave-dwelling species (S. brevibarbatus, S. anshuiensis, and S. tianlinensis). Due to adaptive evolution under extreme environmental conditions, cave-dwelling species have more developed olfactory systems. We observed that, compared with surface-dwelling species, the olfactory sac of the cave-dwelling Sinocyclocheilus species has the following characteristics: higher density of cilia, greater length of sensory cilia, many other special structures (micro-ridge, olfactory islet, rod cilia). These results reveal different levels of olfactory system development, consistent with the view that that cave-dwelling species have more developed olfactory systems than intermediate and surface-dwelling species.


Assuntos
Cyprinidae/anatomia & histologia , Cyprinidae/fisiologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/fisiologia , Animais , Cyprinidae/genética , Ecossistema , Especificidade da Espécie
3.
Bioresour Technol ; 406: 131029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925401

RESUMO

Hydrogen production through the metabolic bypass of microalgae photosynthesis is an environmentally friendly method. This review examines the genetic differences in hydrogen production between prokaryotic and eukaryotic microalgae. Additionally, the pathways for enhancing microalgae-based photosynthetic hydrogen generation are summarized. The main strategies for enhancing microalgal hydrogen production involve inhibiting the oxygen-generating process of photosynthesis and promoting the oxygen tolerance of hydrogenase. Future research is needed to explore the regulation of physiological metabolism through quorum sensing in microalgae to enhance photosynthetic hydrogen production. Moreover, effective evaluation of carbon emissions and sequestration across the entire photosynthetic hydrogen production process is crucial for determining the sustainability of microalgae-based production approaches through comprehensive lifecycle assessment. This review elucidates the prospects and challenges associated with photosynthetic hydrogen production by microalgae.


Assuntos
Hidrogênio , Microalgas , Fotossíntese , Hidrogênio/metabolismo , Microalgas/metabolismo , Fotossíntese/fisiologia , Células Procarióticas/metabolismo , Células Eucarióticas/metabolismo
4.
Phytomedicine ; 128: 155539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522311

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE: The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS: Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS: Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION: Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glicólise , Camundongos Nus , Mitocôndrias , Fosforilação Oxidativa , Saponinas , Humanos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Glicólise/efeitos dos fármacos , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Fosforilação Oxidativa/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Bioeng Biotechnol ; 11: 1289686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026894

RESUMO

Exoskeletons can protect users' lumbar spine and reduce the risk of low back injury during manual lifting tasks. Although many exoskeletons have been developed, their adoptability is limited by their task- and movement-specific effects on reducing burden. Many studies have evaluated the safety and effectiveness of an exoskeleton using the peak/mean values of biomechanical variables, whereas the performance of the exoskeleton at other time points of the movement has not been investigated in detail. A functional analysis, which presents discrete time-series data as continuous functions, makes it possible to highlight the features of the movement waveform and determine the difference in each variable at each time point. This study investigated an assessment method for exoskeletons based on functional ANOVA, which made it possible to quantify the differences in the biomechanical variables throughout the movement when using an exoskeleton. Additionally, we developed a method based on the interpolation technique to estimate the assistive torque of an exoskeleton. Ten men lifted a 10-kg box under symmetric and asymmetric conditions five times each. Lumbar load was significantly reduced during all phases (flexion, lifting, and laying) under both conditions. Additionally, reductions in kinematic variables were observed, indicating the exoskeleton's impact on motion restrictions. Moreover, the overlap F-ratio curves of the lumbar load and kinematic variables imply that exoskeletons reduce the lumbar load by restricting the kinematic variables. The results suggested that at smaller trunk angles (<25°), an exoskeleton neither significantly reduces the lumbar load nor restricts trunk movement. Our findings will help increasing exoskeleton safety and designing effective products for reducing lumbar injury risks.

6.
Expert Rev Gastroenterol Hepatol ; 17(4): 353-361, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896656

RESUMO

INTRODUCTION: Esophageal cancer (EC) is one of the most common malignant tumors of the upper gastrointestinal tract. The etiology of EC is complicated and increasing evidence has shown that microbial infection is closely related to the occurrence of various malignant tumors. Though many studies have been focused on this subject in recent years, the exact relationship between microbial infection and the occurrence of EC remains unclear. AREAS COVERED: In this review, we searched all eligible literature reports, summarized the most recent studies in this research field, and analyzed the pathogenic microorganisms associated with EC, providing the latest evidence and references for the prevention of pathogenic microorganism-related EC. EXPERT OPINION: In recent years, increasing evidence has shown that pathogenic microbial infections are closely associated with the development of EC. Therefore, it is necessary to describe in detail the relationship between microbial infection and EC and clarify its possible pathogenic mechanism, which will shed a light on clinical prevention and treatment of cancer caused by pathogenic microbial infection.


Assuntos
Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/patologia
7.
Drug Des Devel Ther ; 15: 1333-1344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814899

RESUMO

PURPOSE: Lymphoma is considered to be one of the most pressing health problems worldwide owing to its high incidence and mortality. Previous studies have shown that periplocin, a naturally occurring compound, inhibits growth and induces apoptosis in several cancers. However, the effects of periplocin on lymphoma and the underlying mechanisms of action remain unclear. METHODS: The PharmMapper database was used to predict the potential targets of periplocin. The GeneCard database was used to identify lymphoma-related genes. A few intersecting genes were obtained, and the protein-protein interaction network was visualized using STRING Gene ontology analysis. Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using R project. MTS assay, flow cytometry, real-time quantitative polymerase chain reaction (qPCR), and Western blotting were used to verify whether periplocin possesses anti-lymphoma activity. RESULTS: A total of 216 intersecting genes were identified. Numerous cancer-related signaling pathways were visualized using Cytoscape software, with the PI3K-Akt signaling pathway being the highest-ranked pathway related to cell proliferation, apoptosis, and cell cycle progression. HuT 78 and Jurkat cell lines were used to verify the predictions. Periplocin significantly inhibited their proliferation in a dose- and time-dependent manner, but had no effect on the viability of peripheral blood lymphocytes. Flow cytometry revealed that treatment with periplocin increased the apoptotic rate and ratio of HuT 78 and Jurkat cells in the G2/M phase. CDK1 and cyclin B1 complex formation is a key gatekeeper to mitotic division in the G2/M phase. Western blot analysis revealed that periplocin significantly decreased the protein levels of CDK1 and cyclin B1; however, real-time qPCR revealed no effect on gene expression. CONCLUSION: Periplocin showed anti-tumor effects in lymphoma cells through multiple targets and signaling pathways, and could be a novel therapeutic agent for the treatment of lymphoma.


Assuntos
Antineoplásicos/farmacologia , Linfoma/tratamento farmacológico , Saponinas/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Linfoma/metabolismo , Linfoma/patologia , Saponinas/química , Células Tumorais Cultivadas
8.
Biomed Pharmacother ; 121: 109611, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731196

RESUMO

BACKGROUND: Our previous studies have showed that p-Hydroxylcinnamaldehyde (CMSP) could induce the differentiation of ESCC cells via the cAMP-RhoA-MAPK signalling pathway, which suggests a new potential strategy for ESCC treatment. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in several tumour cells by binding to the death receptors DR4 and DR5. However, TRAIL has little effect on oesophageal squamous cell carcinoma (ESCC) cells due to the loss of the receptors. The present study determined the effect of CMSP, the firstly found chemical constituent of Cochinchinamomordica seed (CMS), on TRAIL-induced apoptosis and its mechanism in ESCC cells. METHODS: MTS assays were performed to examine the CMSP- and TRAIL-mediated inhibition of ESCC cell growth. Flow cytometry and Hoechst 33258 staining assays were used to detect apoptosis in ESCC cells treated with CMSP combined with TRAIL. Western blotting was used to determine the effect of CMSP on the expression of p38, p-p38, DR4, DR5, Bid and caspase-3/8 in ESCC cells treated with CMSP combined with TRAIL. Additionally, immunodeficient Balb-c/null mouse model was used to determine the chemotherapeutic efficacy of CMSP and TRAIL against ESCC tumour xenograft growth in vivo. RESULTS: We found that the combination of CMSP and TRAIL had a greater inhibitory effect on ESCC cell viability in vitro than CMSP or TRAIL alone. CMSP enhanced the TRAIL-induced apoptosis in ESCC cells by upregulating the expression of DR4 and DR5 via the p38 MAPK signalling pathway. Furthermore, the increased expression of DR4 and DR5 upon TRAIL-induced apoptosis in ESCC cells was mediated at least in part by subsequent caspase-3 and caspase-8 activation. Moreover, the in vivo model showed that tumour growth was significantly slower in CMSP and TRAIL combination-treated mice than in mice treated with CMSP or TRAIL alone. CONCLUSION: Taken together, our findings indicate that CMSP as an extract from TCM, might be as a potential sensitizer of TRAIL and thus provide a novel strategy for the clinical treatment of ESCC.


Assuntos
Cinamatos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Momordica/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/análise , Sementes/química
9.
Mitochondrial DNA B Resour ; 2(2): 638-639, 2017 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33473929

RESUMO

In this study, we first determined the complete mitochondrial genome sequence of Sinocyclocheilus jii, which is an endemic species to Southwestern China. The complete mitochondrial genome is 16,577 bp in length, consisting of 37 genes coding for 13 proteins, two rRNAs, 22 tRNAs, and one control region. Its gene arrangement pattern was identical to that of most vertebrates. Phylogenetic analysis using mitochondrial genomes of 11 species showed that nine Sinocyclocheilus species clustered as one monophyletic clade and S. jii was the most basal species on the phylogenetic tree of the Sinocyclocheilus fishes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa