Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; 20(7): e2307619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803332

RESUMO

Atomically precise metal nanoclusters (NCs) have garnered tremendous attention as light-harvesting antennas in heterogeneous photocatalysis due to unique atomic stacking mode, quantum confinement effect, and enriched active sites. However, metal NCs as photosensitizers suffer from extremely short carrier lifetime, poor photostability, and difficulty in carrier migration, which hinder the wide-spread utilization of metal NCs in solar energy conversion. To solve these problems, herein, Ag-doped glutathione (GSH)-capped gold NCs, i.e., alloy Au1- x Agx @GSH NCs and non-conjugated insulating polymer of poly(diallyl-dimethylammonium chloride) (PDDA) are utilized as the building blocks for layer-by-layer assembly of spatially multilayered alloy NCs/metal oxide (MO) photosystems. The alternately deposited ultrathin PDDA layer in-between Au1- x Agx @GSH NCs on the MO substrate functions as an efficient charge flow mediator to relay the directional photoelectron transfer over Au1- x Agx @GSH NCs, giving rise to the cascade charge transfer chain. This peculiar carrier migration mode endowed by exquisite interface configuration design significantly boosts the unidirectional electron migration from the Au1- x Agx @GSH NCs to the MO substrate, substantially improving the visible-light-driven photoelectrochemical water oxidation performances of MO/(PDDA-Au1- x Agx )n multilayer heterostructured photoanodes. The work will inspire the rational construction of alloy metal NCs-based photosystems for modulating spatially controllable charge transfer pathway for solar energy conversion.

2.
Small ; : e2400958, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644328

RESUMO

Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework. In these exquisitely designed LbL assembles MOs/(TMCs QDs/MQDs)n heterostructured photoanodes, TMCs QDs layer acts as light-harvesting antennas, and MQDs layer serves as electron-capturing mediator to relay cascade electrons from TMCs QDs to the MOs substrate, thereby yielding the spatially ordered tandem charge transport chain and contributing to the significantly boosted charge separation over TMCs QDs and solar water oxidation efficiency of MOs/(TMCs QDs/MQDs)n photoanodes. The relationship between interface configuration and charge transfer characteristics is unambiguously unlocked, by which photoelectrochemical mechanism is elucidated. This work would provide inspiring ideas for precisely mediating interfacial charge transfer pathways over QDs toward solar energy conversion.

3.
Langmuir ; 40(17): 9144-9154, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629776

RESUMO

Wastewater pollutants are a major threat to natural resources, with antibiotics and heavy metals being common water contaminants. By harnessing clean, renewable solar energy, photocatalysis facilitates the synergistic removal of heavy metals and antibiotics. In this paper, MXene was both a template and raw material, and MXene-derived oxide (TiO2) and SnIn4S8 Z-scheme composite materials were synthesized and characterized. The synergistic mode of photocatalytic reduction and oxidation leads to the enhanced utilization of e-/h+ pairs. The TiO2/SnIn4S8 exhibited a higher photocatalytic capacity for the simultaneous removal of tetracycline (TC) (20 mg·L-1) and Cr(VI) (15 mg·L-1). The main active substances of TC degradation and Cr(VI) reduction were identified via free radical scavengers and electron paramagnetic resonance (EPR). Additionally, the potential photocatalytic degradation route of TC was thoroughly elucidated through liquid chromatography-mass spectrometry (LC-MS).

4.
Inorg Chem ; 63(2): 1471-1479, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173240

RESUMO

Atomically precise metal nanoclusters (NCs) have been deemed as a new generation of metal nanomaterials because of their characteristic atomic stacking fashion, quantum confinement effect, and multitude of active sites. The discrete molecular-like energy band structure of metal NCs endows them with photosensitization capability for light harvesting and conversion. However, applications of metal NCs in photoelectrocatalysis are limited by the ultrafast charge recombination and unfavorable stability, impeding the construction of metal NC-based photosystems. In this work, we elaborately crafted multilayered metal oxide (MO)/(metal NCs/insulating polymer)n photoanodes by a facile layer-by-layer (LbL) assembly technique. In these well-defined heterostructured photoanodes, glutathione (GSH)-wrapped metal NCs (Agx@GSH, Ag9@GSH6, Ag16@GSH9, and Ag31@GSH19) and an insulating poly(allylamine hydrochloride) (PAH) layer are alternately deposited on the MO substrate in a highly ordered integration mode. We found that photoelectrons of metal NCs can be tunneled into the MO substrate via the intermediate ultrathin insulating polymer layer by stimulating the tandem charge transfer route, thus facilitating charge separation and boosting photoelectrochemical water oxidation performances. Our work would open a new frontier for judiciously regulating directional charge transport over atomically precise metal NCs for solar-to-hydrogen conversion.

5.
Inorg Chem ; 63(19): 8970-8976, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693870

RESUMO

Wholly distinct from conjugated polymers which are featured by generic charge transfer capability stemming from a conjugated molecular structure, solid nonconjugated polymers mediated charge transport has long been deemed as theoretically impossible because of the deficiency of π electrons along the molecular skeleton, thereby retarding their widespread applications in solar energy conversion. Herein, we first conceptually unveil that intact encapsulation of metal oxides (e.g., TiO2, WO3, Fe2O3, and ZnO) with an ultrathin nonconjugated polyelectrolyte of branched polyethylenimine (BPEI) can unexpectedly accelerate the unidirectional charge transfer to the active sites and foster the defect generation, which contributes to the boosted charge separation and prolonged charge lifetime, ultimately resulting in considerably improved photoelectrochemical (PEC) water oxidation activities. The interfacial charge transport origins endowed by BPEI adornment are elucidated, which include acting as a hole-withdrawing mediator, promoting vacancy generation, and stimulating the directional charge flow route. We additionally ascertain that such charge transport characteristics of BPEI are universal. This work would unlock the charge transfer capability of nonconjugated polymers for solar water oxidation. The nonconjugated insulating polymer was utilized as a charge transport mediator for boosting charge migration and separation over metal oxides toward solar water oxidation.

6.
Inorg Chem ; 63(1): 870-880, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117690

RESUMO

Solar-powered photocatalytic conversion of CO2 to hydrocarbon fuels represents an emerging approach to solving the greenhouse effect. However, low charge separation efficiency, deficiency of surface catalytic active sites, and sluggish charge-transfer kinetics, together with the complicated reaction pathway, concurrently hinder the CO2 reduction. Herein, we show the rational construction of transition metal chalcogenides (TMCs) heterostructure CO2 reduction photosystems, wherein the TMC substrate is tightly integrated with amorphous oxygen-containing cobalt sulfide (CoSOH) by a solid non-conjugated polymer, i.e., poly(vinyl alcohol) (PVA), to customize the unidirectional charge-transfer pathway. In this well-defined multilayered nanoarchitecture, the PVA interim layer intercalated between TMCs and CoSOH acts as a hole-relaying mediator and meanwhile boosts CO2 adsorption capacity, while CoSOH functions as a terminal hole-collecting reservoir, stimulating the charge transport kinetics and boosting the charge separation over TMCs. This peculiar interface configuration and charge transport characteristics endow TMC/PVA/CoSOH heterostructures with significantly enhanced visible-light-driven photoactivity and CO2 conversion. Based on the intermediates probed during the photocatalytic CO2 reduction reaction, the photocatalytic mechanism was determined. Our work would inspire sparkling ideas to mediate the charge transfer over semiconductor for solar carbon neutral conversion.

7.
Inorg Chem ; 63(24): 11092-11101, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38843593

RESUMO

Black phosphorus (BP), a promising two-dimensional (2D) layered semiconductor material, has gained enormous attention due to its impressive properties over the past several years. Although plenty of methods have been developed to synthesize high-quality BP, most of the currently available BP materials still suffer from unsatisfactory crystallization, purity, and stability in air, hindering their practical application. A facile approach to synthesizing ultrahigh-quality single-crystal BP is of significance to shed light on the nature of 2D semiconductor materials and their massive application. In this work, we present the facile and efficient circulating vapor growth approach to growing bulk single-crystal BP. The as-grown BP material features high crystallinity and ultrahigh purity (higher than 99.999 at %), exceeding those of all the previously reported and some commercially available BP crystals. It also maintains excellent stability in air and water after 15 consecutive days of test. Moreover, the as-synthesized BP material features good thermal stability, oxidation resistance, and excellent electrical properties, as well. This study provides a new approach for the fabrication of ultrahigh-quality BP material and thus promotes its application.

8.
Small ; 19(36): e2302372, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37118858

RESUMO

Atomically precise metal nanoclusters (NCs) represent an emerging sector of light-harvesting antennas by virtue of peculiar atomic stacking fashion, quantum confinement effect, and molecular-like discrete energy band structure. Nevertheless, precise control of charge carriers over metal NCs has yet to be achieved by the short carrier lifetime and intrinsic instability of metal NCs, which renders the complexity of metal NCs-based photosystems with photoredox mechanisms remaining elusive. Herein, fine tuning of charge migration over metal NCs is demonstrated by constructing directional charge transfer channels in multilayered heterostructure enabled by a facile layer-by-layer (LbL) assembly approach, wherein oppositely charged branched poly-ethylenimine (BPEI) and glutathione (GSH)-capped gold NCs [Aux NCs, Au25 (GSH)18 NCs] are alternately deposited on the metal oxide (MOs: TiO2 , WO3 , Fe2 O3 ) substrates. TheAux (Au25 ) NCs layer serves as light-harvesting antennas for engendering charge carriers, andBPEI interim layer uniformly intercalated at the interface of Aux NCs layer constitutes the tandem hole transport channel for motivating the charge transfer cascade, resulting in the considerably enhanced photoelectrochemical water oxidation performances. Besides, poor photo-stability of Aux NCs is surmounted by stimulating the hole transfer kinetics process.

9.
Small ; 19(35): e2300804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183292

RESUMO

The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2 -to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2 ). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2 -to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.

10.
Inorg Chem ; 62(15): 6138-6146, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000131

RESUMO

Atomically precise metal nanoclusters (NCs) have emerged as feasible alternatives to traditional photosensitizers in solar energy conversion due to the unique atomic stacking mode, quantum size effect, and abundant active sites. Despite the sporadic advancement in fabricating metal NC-based photosystems, most of which are predominantly centered on Au NCs, unleashing atomically precise silver nanoclusters as light-harvesting antennas has still been in the infant stage, with the charge transfer mechanism remaining elusive. Herein, we comprehensively demonstrate the photosensitization effect of Ag NCs in the photoelectrochemical (PEC) water-splitting reaction and strictly evaluate the correlation of photosensitization efficiency with atomic architecture. To these ends, tailor-made negatively charged l-glutathione (GSH)-capped Ag NCs [Agx, Ag9(GSH)6, Ag16(GSH)9, Ag31(GSH)19] as building blocks are controllably deposited on the metal oxide (MOs = TiO2, WO3, Fe2O3) substrate by a facile self-assembly strategy. Benefiting from the highly efficient photosensitization effect of atomically precise Ag NCs, these self-assembled MOs/Ag NC heterostructured photoanodes with an elegant charge transfer interface demonstrate significantly enhanced photoelectrochemical water oxidation performances under visible-light irradiation on account of efficient charge transport from Ag NCs to the MO substrate, substantially prolonging the charge lifetime of Ag NCs. Our work would significantly inspire ongoing interest in unlocking the generic photosensitization capability of atomically precise metal NCs for solar energy conversion.

11.
Inorg Chem ; 62(42): 17454-17463, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827854

RESUMO

Transition-metal chalcogenide quantum dots (TMCs QDs) exhibit emerging potential in the field of solar energy conversion due to large absorption coefficients for light harvesting, quantum size effect, and abundant active sites. However, fine-tuning the photoinduced charge carrier over TMCs QDs to manipulate the directional charge-transfer pathway remains challenging, considering their ultrashort charge lifetime and slow charge-transfer kinetics. To this end, herein, MoSx/PDDA/TMCs QDs heterostructures were exquisitely designed by a simple and green electrostatic self-assembly strategy under ambient conditions, wherein tailor-made negatively charged TMCs QDs stabilized by mercaptoacetic acid (MAA) were precisely self-assembled on the positively charged polydiallyl dimethylammonium chloride (PDDA)-modified MoSx nanoflowers (NFs), forming a well-defined three-dimensional heterostructured nanoarchitecture. As an electron trapping agent, an MoSx NFs cocatalyst benefits the unidirectional electron transfer from TMCs QDs to the ideal active centers on the MoSx NFs surface by tunneling the ultrathin insulating polymer interim layer, thereby boosting the charge separation efficiency and endowing self-assembled MoSx/PDDA/TMCs QDs heterostructures with considerably increased photocatalytic hydrogen evolution activity (1.96 mmol·g-1·h-1) and admirable stability under visible light irradiation. Our work will provide new insights into smart regulation of directional charge transfer over TMCs QDs-based photosystems for solar energy conversion.

12.
Inorg Chem ; 62(47): 19358-19365, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37965749

RESUMO

Atomically precise metal nanoclusters (NCs) demonstrate emerging potential as a new generation of photosensitizers in photoredox catalysis. However, metal NCs suffer from intrinsic poor instability, which leads to the loss of photosensitization effect and hampers their widespread applications in heterogeneous photocatalysis. Herein, we corroborate the design of a spatially directional charge transfer pathway over transition metal chalcogenide (TMC)-based heterostructures by way of a facile and efficient electrostatic self-assembly approach. Positively charged solid-state nonconjugated insulating polymer of poly(allylamine hydrochloride) (PAH) and negatively charged glutathione (GSH) capped metal NCs [Ag9@(GSH)6] as building blocks were controllably and highly ordered anchored on the TMC substrate. It was unveiled that owing to the appropriate energy level alignment and interface configuration, photogenerated electrons over metal NCs can directionally flow to the TMC substrate with the aid of PAH, which functions as an interfacial charge transfer mediator, and simultaneously holes migrate in the opposite direction, thereby collaboratively contributing to substantially boosted charge separation and prolonged charge lifetime. Benefiting from these merits, the thus self-assembled TMCs/PAH/metal NC heterostructure unfolds conspicuously enhanced photoactivity toward anaerobic selective photocatalytic reduction of nitroaromatics to amino derivatives under visible light irradiation. This work would significantly reinforce our fundamental understanding of the charge transfer characteristic of atomically precise metal NCs and the charge-withdrawing capability of solid insulating polymers for solar energy conversion.

13.
Inorg Chem ; 62(41): 16965-16973, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37794771

RESUMO

Atomically precise alloy nanoclusters (NCs) inherit the advantages of homometal NC counterparts such as atomic stacking fashion, quantum confinement effect, and enriched catalytic active sites and simultaneously possess the advantageous physicochemical properties such as significantly enhanced photostability, ideal photosensitization efficiency, and favorable energy band structure. Nevertheless, elucidation of the roles of alloy NCs and alloy nanocrystals (NYs) in boosting solar water oxidation has so far not yet been reported owing to the deficiency of applicable alloy NC photosystems. Herein, utilizing the generic thermal-induced self-transformation of alloy NCs to alloy NYs, we comprehensively explore the photosensitization properties of glutathione (GSH)-capped alloy NCs (AgxAu1-x@GSH and CuxAu1-x@GSH) and the corresponding alloy NY (AgAu and CuAu) counterparts in solar water oxidation reaction. The results imply that photoelectrons of alloy NCs surpass the hot electrons over plasmonic alloy NYs in stimulating the PEC water oxidation reaction. The photoelectrons of alloy NCs demonstrate lower interfacial charge-transfer resistance, longer carrier lifetime, and a more enhanced photosensitization effect with respect to the plasmonic alloy NYs, contributing to the significantly boosted photoelectrochemical water oxidation activities. Moreover, we found that our result is universal.

14.
Inorg Chem ; 62(45): 18649-18659, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903426

RESUMO

Transition-metal chalcogenide quantum dots (TMC QDs) show great promise in artificial photosynthesis for excellent light-harvesting capability. Nonetheless, TMC QDs have limitations of ultrafast charge recombination rate, sluggish carrier migration kinetics, and generic photocorrosion, retarding their widespread applications. To solve these obstacles, herein, we demonstrate the stimulation of charge migration over TMC QDs with the aid of nonconjugated insulating polymer and graphene (GR) for a versatile photoredox selective organic transformation. To this end, an ultrathin insulating polymer layer, i.e., poly(allylamine hydrochloride) (PAH), grafted on the GR framework, is electrostatically intercalated at the interface of TMCs QDs and the GR framework via a self-assembly for constructing TMC QDs/PAH/GR three-dimensional spatially multilayered heterostructures. In this well-defined nanoarchitecture, TMC QDs function as a light-harvesting antenna, GR as a terminal electron reservoir, and PAH as an intermediate interfacial charge relay mediator. We ascertain that the ultrathin PAH interim layer unexpectedly fosters the photoelectron migration from TMCs QDs to the GR framework in a tunable fashion, boosting the charge separation of TMCs QDs and resulting in significantly improved photoactivities toward anaerobic reduction of aromatic nitro compounds to amino derivatives and oxidation of alcohols to aldehydes under visible light. Photoredox catalysis mechanisms of such TMC QDs/PAH/GR photosystems are elucidated, and the active species in these photoredox organic conversion reactions are comprehensively determined. Our work would open new frontiers to finely modulate the charge transport of TMCs QDs via nonconjugated insulating polymers for solar energy conversion.

15.
Inorg Chem ; 62(1): 520-529, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563080

RESUMO

Metal nanoclusters (NCs) have been unleashed as an emerging category of metal materials by virtue of integrated merits including the unusual atom-stacking mode, quantum confinement effect, and fruitful catalytically active sites. Nonetheless, development of metal NCs as photosensitizers is blocked by light-induced instability and ultrashort carrier lifespan, which remarkably retards the design of metal NC-involved photosystems, hence resulting in the decreased photoactivities. To solve these obstacles, herein, we conceptually probed the charge transfer characteristics of the BiVO4 photoanode photosensitized by atomically precise alloy metal NCs, wherein tailor-made l-glutathione-capped gold-silver bimetallic (AuAg) NCs were controllably self-assembled on the BiVO4 substrate. It was uncovered that alien Ag atom doping is able to effectively stabilize the alloy AuAg NCs and simultaneously photosensitize the BiVO4 photoanode, significantly boosting the photoelectrochemical (PEC) water oxidation performances. The reasons for the robust and stable PEC water oxidation activities of the AuAg NCs/BiVO4 composite photoanode were unambiguously unleashed. We ascertain that Ag atom doping in the staple motif of Aux NCs efficaciously protects the NCs from rapid oxidation, enhancing the photostability, boosting the photosensitization efficiency, and thus leading to the considerably improved PEC water splitting activities compared with the homometallic counterpart. This work could afford a new strategy to judiciously tackle the inherent detrimental instability of metal NCs for solar energy conversion.

16.
Inorg Chem ; 61(2): 1188-1194, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962790

RESUMO

Precisely modulating the spatial charge migration/separation constitutes the central issue in dictating the solar conversion efficiency of photoelectrochemical (PEC) cells, whereas it still remains a grand challenge. Here, we conceptually demonstrate the construction of hierarchically ordered metal oxide (MO)/transition-metal chalcogenide quantum dots (TMC QDs) multilayered heterostructured photoanodes, that is, MO/[TMC QDs(+)/TMC QDs(-)]n (TMC QDs: CdTe, CdSe, CdS), by a simple and general bottom-up self-assembly route. Tailor-made intrinsically oppositely charged TMC QDs are alternately deposited on the highly ordered MO via a generic ligand-triggered electrostatic interaction to craft heterostructured photoanodes. The charge-transfer pathway stimulated by the photosensitization of TMC QDs is finely tuned by the assembly sequence. The advantageous multilayered nanoarchitecture renders the MO/[TMC QDs(+)/TMC QDs(-)]n photoanodes exhibit substantially enhanced PEC performances under light irradiation, owing to the applicable energy-level configuration and peculiar combination fashion between building blocks and considerably boosted interfacial charge separation resulting from generating spatial tandem charge transport. Furthermore, photosensitization efficiency comparison among TMC QDs is comprehensively performed with PEC mechanisms elucidated.

17.
Inorg Chem ; 61(44): 17828-17837, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36274200

RESUMO

Transition-metal chalcogenides (TMCs) have received enormous attention by virtue of their large light absorption coefficient, abundant catalytically active sites, and markedly reduced spatially vectorial charge-transfer distance originating from generic structural merits. However, the controllable construction of TMC-based heterostructured photosystems for photocatalytic carbon dioxide (CO2) reduction is retarded by the ultrashort charge lifetime, sluggish charge-transfer kinetics, and low target product selectivity. Herein, we present the rational design of two-dimensional (2D)/zero-dimensional (0D) heterostructured CO2 reduction photosystems by an electrostatic self-assembly strategy, which is enabled by precisely anchoring CsPbBr3 quantum dots (QDs) on the 2D TMC (CdIn2S4, ZnIn2S4, In2S3) frameworks. The peculiar 2D/0D integration mode and suitable energy-level alignment between these two assembly units afford maximal interfacial contact and applicable potential for CO2 photoreduction, thus endowing the self-assembled TMCs/CsPbBr3 nanocomposites with considerably improved visible-light-driven photocatalytic performances toward CO2 reduction to carbon monoxide with high selectivity. The enhanced photocatalytic performances of TMCs/CsPbBr3 heterostructures are attributed to the abundant active sites on the TMC frameworks, excellent light absorption of CsPbBr3 QDs, and well-defined 2D/0D heterostructures of TMCs/CsPbBr3 QDs photosystems, which synergistically boosts the directional charge transport from CsPbBr3 QDs to TMCs, enhancing the interfacial charge migration/separation. Our work would inspire the construction of novel TMCs-involved photosystems for solar-to-fuel conversion.

18.
Inorg Chem ; 61(47): 19022-19030, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36377248

RESUMO

Atomically precise metal nanoclusters (NCs) have recently emerged as a promising sector of metal nanomaterials in terms of peculiar atomic stacking fashion, quantum confinement effect, and enriched catalytically active sites, which are wholly distinct from conventional metal nanocrystals (NYs) in all respects. However, atomically precise metal NCs inevitably suffer from intrinsic poor instability either under light irradiation or thermal treatment owing to the ultrahigh surface energy, thereby resulting in substantial loss of photosensitization efficiency and retarding their emerging utilization in photoredox catalysis. Here, we first conceptually reveal the charge transfer characteristic difference between atomically precise metal NCs and metal NYs attained by self-transformation in boosting interfacial charge migration and separation. The results signify that the interfacial charge transfer impetus of atomically precise metal NCs as a photosensitizer versus metal NYs as a Schottky-type electron-withdrawing mediator is closely associated with the loading amount on the semiconductor substrate. The photosensitization effect of atomically precise metal NCs is superior to the electron trapping capability of metal NYs when the loading amount of the metal ingredient is relatively high and vice versa. Our work would significantly bridge the gap between atomically precise metal NCs and metal NYs in fine tuning of the charge transfer pathway in photocatalysis toward solar energy conversion.

19.
J Am Chem Soc ; 142(52): 21899-21912, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33322903

RESUMO

Conjugated polymers are deemed as conductive carrier mediators for engendering the π electrons along the molecular framework, while the role of nonconjugated insulated polymers has been generally overlooked without the capability to participate in the solar-powered oxidation-reduction kinetics and charge-transfer process. Alternatively, considering the ultrashort charge lifetime and significant deficiency of metal nanocluster (NC)-based photosystems, the fine tuning of charge migration over atomically precise ultrasmall metal NCs as novel light-harvesting antennas has so far not yet been unleashed. Here, we unlock the charge-transfer capability of a nonconjugated polymer to modulate the charge flow over metal NCs (Aux and Au25) by such a solid-state nonconductive polymer via a conceptually new chemistry strategy by which l-glutathione (GSH)-capped gold (Aux@GSH) NCs and poly(diallyl-dimethylammonium chloride) (PDDA) were alternately self-assembled on the metal oxide (MO: WO3, Fe2O3, and TiO2) substrates. The ultrathin nonconjugated PDDA interim layer periodically intercalated in-between Aux (Au25) NC layers concurrently serves as an unexpected charge-transfer mediator to foster the unidirectional electron flow from Aux(Au25) NCs to MOs by forming a tandem charge-transfer chain, hence endowing the multilayered MO/(PDDA-Aux)n heterostructures with significantly boosted photoelectrochemical water oxidation performance under light irradiation. The unanticipated role of PDDA as a cascade charge mediator is demonstrated to be universal. Our work would unlock the potential charge-transport capability of nonconjugated polymers as a novel charge mediator for solar-to-chemical conversion.

20.
Inorg Chem ; 59(10): 7325-7334, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32338507

RESUMO

Modulation of photoinduced charge separation/migration and construction of controllable charge transfer pathway over photoelectrodes have been attracting enduring interest in semiconductor-based photoelectrochemical (PEC) cells but suffer from sluggish charge transport kinetics. Here, we report a general approach to fabricate NP-TNTAs/(TMCs QDs/PSS)n (X = Te, Se, S) photoanodes via a facile and green electrostatic layer-by-layer (LbL) self-assembly strategy, for which transition-metal chalcogenides quantum dots (TMCs QDs) [CdX (X = Se, Te, S)] and poly(sodium 4-styrenesulfonate) (PSS) were periodically deposited on the nanoporous TiO2 nanotube arrays (NP-TNTAs) via substantial electrostatic force, resulting in the continuous charge transfer pathway. NP-TNTAs/(TMCs QDs/PSS)n photoanodes demonstrate significantly enhanced solar-driven photoelectrochemical (PEC) water oxidation activities, relative to NP-TNTAs and TMCs QDs under visible and simulated sunlight irradiation, predominantly because of the suitable energy level configuration between NP-TNTAs and TMCs QDs, unique integration mode, and high-speed interfacial charge separation rate endowed by LbL assembly. The ultrathin PSS intermediate layer functions as "molecule glue" for pinpoint and uniform self-assembly of TMCs QDs on the framework of NP-TNTAs and photosensitization effect of TMCs QDs triggers the unidirectional charge transfer cascade, synergistically boosting the charge separation/transfer efficiency. Our work offers an efficacious approach to craft multilayered photoelectrodes and spur further interest in finely tuning the spatial charge flow in PEC cell for solar-to-hydrogen conversion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa