Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Gastric Cancer ; 24(3): 611-623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33611641

RESUMO

BACKGROUND: Immunotherapy targeting PD-1 provides a limited survival benefit in patients with unresectable advanced or recurrent gastric cancer (GC). Beside PD-L1, the expression of inhibitory ligands such as CEACAM-1 and LSECtin on GC cells account for this limitation. Here we assessed their expression and immune suppressive effect in GC patients. METHODS: Using multiplexed immunohistochemistry staining, we evaluated the distribution of different inhibitory ligands, including PD-L1, CEACAM-1, LSECtin, and MHC class II, in 365 GC patients. We analyzed their correlations and overall survival (OS) based on the expression of each inhibitory ligand and the independent prognostic factors that affect OS. Subsequently, we evaluated the additive effect of anti-PD-1 mAb or anti-PD-L1 mAb with/without anti-Lag-3 mAb with/without anti-Tim-3 mAb in cytotoxic assay using tumor-antigen specific CTL clones against GC cell lines. RESULTS: Co-expression of the inhibitory ligands for PD-1, Tim-3, and Lag-3 was observed in the largest proportion (34.7%). CEACAM-1, LSECtin, and MHC class II expression showed significant correlation with PD-L1 expression and OS. Multivariable analysis demonstrated that CEACAM-1 low is an independent prognostic factor. Furthermore, combining dual and triple ICIs yielded additive effect on cytotoxicity of CTL clones against each immune inhibitory ligand positive GC cell lines. CONCLUSIONS: Our findings suggested that the expression of inhibitory ligands for Tim-3 and Lag-3 on GC cells serve as potential biomarkers to predict the response to anti-PD-1 therapy and the combinatorial immunotherapy with ICIs targeting for PD-1, Tim-3, and Lag-3 has a therapeutic potential for GC patients.


Assuntos
Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/terapia , Idoso , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Lectinas Tipo C/metabolismo , Masculino , Singapura , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Análise de Sobrevida
2.
J Pathol ; 246(1): 89-102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29926931

RESUMO

Characterising the activated oncogenic signalling that leads to advanced breast cancer is of clinical importance. Here, we showed that SET domain, bifurcated 1 (SETDB1), a histone H3 lysine 9 methyltransferase, is aberrantly expressed and behaves as an oncogenic driver in breast cancer. SETDB1 enhances c-MYC and cyclin D1 expression by promoting the internal ribosome entry site (IRES)-mediated translation of MYC/CCND1 mRNA, resulting in prominent signalling of c-MYC to promote cell cycle progression, and provides a growth/self-renewal advantage to breast cancer cells. The activated c-MYC-BMI1 axis is essential for SETDB1-mediated breast tumourigenesis, because silencing of either c-MYC or BMI1 profoundly impairs the enhanced growth/colony formation conferred by SETDB1. Furthermore, c-MYC directly binds to the SETDB1 promoter region and enhances its transcription, suggesting a positive regulatory interplay between SETDB1 and c-MYC. In this study, we identified SETDB1 as a prominent oncogene and characterised the underlying mechanism whereby SETDB1 drives breast cancer, providing a therapeutic rationale for targeting SETDB1-BMI1 signalling in breast cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/enzimologia , Carcinogênese/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Ciclo Celular , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Células MCF-7 , Camundongos , Oncogenes , Complexo Repressor Polycomb 1/genética , Proteínas Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Ativação Transcricional
3.
BMC Cancer ; 18(1): 940, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285677

RESUMO

BACKGROUND: Clonal VDJ rearrangement of B/T cell receptors (B/TCRs) occurring during B/T lymphocyte development has been used as a marker to track the clonality of B/T cell populations. METHODS: We systematically profiled the B/T cell receptor repertoire of 936 cancer cell lines across a variety of cancer types as well as 462 Epstein-Barr Virus (EBV) transformed normal B lymphocyte lines using RNA sequencing data. RESULTS: Rearranged B/TCRs were readily detected in cell lines derived from lymphocytes, and subclonality or potential biclonality were found in a number of blood cancer cell lines. Clonal BCR/TCR rearrangements were detected in several blast phase CML lines and unexpectedly, one gastric cancer cell line (KE-97), reflecting a lymphoid origin of these cells. Notably, clonality was highly prevalent in EBV transformed B lymphocytes, suggesting either transformation only occurred in a few B cells or those with a growth advantage dominated the transformed population through clonal evolution. CONCLUSIONS: Our analysis reveals the complexity and heterogeneity of the BCR/TCR rearrangement repertoire and provides a unique insight into the clonality of lymphocyte derived cell lines.


Assuntos
Neoplasias/genética , RNA/genética , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos B/citologia , Linhagem Celular Tumoral , Neoplasias Hematológicas/genética , Herpesvirus Humano 4/genética , Humanos , Linfócitos
4.
Gut ; 66(8): 1358-1368, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27196599

RESUMO

OBJECTIVES: Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. DESIGN: High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. RESULTS: The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. CONCLUSIONS: Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Expressão Gênica/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Pirimidinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP40/genética , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Transplante de Neoplasias , Oncogenes/genética , Fosfoproteínas/genética , Análise de Sequência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Fatores de Transcrição , Transcriptoma , Proteínas de Sinalização YAP , Quinases Ativadas por p21/genética , Quinase Ativadora de Quinase Dependente de Ciclina
5.
J Pathol ; 235(4): 559-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25404354

RESUMO

We investigated the oncogenic role of SETDB1, focusing on non-small cell lung cancer (NSCLC), which has high expression of this protein. A total of 387 lung cancer cases were examined by immunohistochemistry; 72% of NSCLC samples were positive for SETDB1 staining, compared to 46% samples of normal bronchial epithelium (106 cases) (p <0.0001). The percentage of positive cells and the intensity of staining increased significantly with increased grade of disease. Forced expression of SETDB1 in NSCLC cell lines enhanced their clonogenic growth in vitro and markedly increased tumour size in a murine xenograft model, while silencing (shRNA) SETDB1 in NSCLC cells slowed their proliferation. SETDB1 positively stimulated activity of the WNT-ß-catenin pathway and diminished P53 expression, resulting in enhanced NSCLC growth in vitro and in vivo. Our finding suggests that therapeutic targeting of SETDB1 may benefit patients whose tumours express high levels of SETDB1.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Proteínas Metiltransferases/metabolismo , Via de Sinalização Wnt , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Histona-Lisina N-Metiltransferase , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Gradação de Tumores , Transplante de Neoplasias , Proteínas Metiltransferases/genética , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/genética
7.
Cancer Res ; 83(6): 922-938, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638333

RESUMO

Despite the remarkable clinical responses achieved with immune checkpoint blockade therapy, the response rate is relatively low and only a subset of patients can benefit from the treatment. Aberrant RNA accumulation can mediate IFN signaling and stimulate an immune response, suggesting that targeting RNA decay machinery might sensitize tumor cells to immunotherapy. With this in mind, we identified an RNA exoribonuclease, XRN1, as a potential therapeutic target to suppress RNA decay and stimulate antitumor immunity. Silencing of XRN1 suppressed tumor growth in syngeneic immunocompetent mice and potentiated immunotherapy efficacy, while silencing of XRN1 alone did not affect tumor growth in immunodeficient mice. Mechanistically, XRN1 depletion activated IFN signaling and the viral defense pathway; both pathways play determinant roles in regulating immune evasion. Aberrant RNA-sensing signaling proteins (RIG-I/MAVS) mediated the expression of IFN genes, as depletion of each of them blunted the elevation of antiviral/IFN signaling in XRN1-silenced cells. Analysis of pan-cancer CRISPR-screening data indicated that IFN signaling triggered by XRN1 silencing is a common phenomenon, suggesting that the effect of XRN1 silencing may be extended to multiple types of cancers. Overall, XRN1 depletion triggers aberrant RNA-mediated IFN signaling, highlighting the importance of the aberrant RNA-sensing pathway in regulating immune responses. These findings provide the molecular rationale for developing XRN1 inhibitors and exploring their potential clinical application in combination with cancer immunotherapy. SIGNIFICANCE: Targeting XRN1 activates an intracellular innate immune response mediated by RNA-sensing signaling and potentiates cancer immunotherapy efficacy, suggesting inhibition of RNA decay machinery as a novel strategy for cancer treatment.


Assuntos
Neoplasias , RNA , Animais , Camundongos , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Estabilidade de RNA , Transdução de Sinais
8.
Mol Cancer Res ; 20(4): 637-649, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022315

RESUMO

KDM6A, an X chromosome-linked histone lysine demethylase, was reported to be frequently mutated in many tumor types including breast and bladder cancer. However, the functional role of KDM6A is not fully understood. Using MCF10A as a model of non-tumorigenic epithelial breast cells, we found that silencing KDM6A promoted cell migration and transformation demonstrated by the formation of tumor-like acini in three-dimensional culture. KDM6A loss reduced the sensitivity of MCF10A cells to therapeutic agents commonly used to treat patients with triple-negative breast cancer and also induced TGFß extracellular secretion leading to suppressed expression of cytotoxic genes in normal human CD8+ T cells in vitro. Interestingly, when cells were treated with TGFß, de novo synthesis of KDM6A protein was suppressed while TGFB1 transcription was enhanced, indicating a TGFß/KDM6A-negative regulatory axis. Furthermore, both KDM6A deficiency and TGFß treatment promoted disorganized acinar structures in three-dimensional culture, as well as transcriptional profiles associated with epithelial-to-mesenchymal transition and metastasis, suggesting KDM6A depletion and TGFß drive tumor progression. IMPLICATIONS: Our study provides the preclinical rationale for evaluating KDM6A and TGFß in breast tumor samples as predictors for response to chemo and immunotherapy, informing personalized therapy based on these findings.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Bexiga Urinária , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Células Epiteliais/patologia , Feminino , Histona Desmetilases/genética , Humanos , Fator de Crescimento Transformador beta , Neoplasias da Bexiga Urinária/genética
9.
Cancers (Basel) ; 13(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638374

RESUMO

Bladder cancer is the 10th most commonly diagnosed cancer in the world, accounting for around 573,000 new cases and 213,000 deaths in 2020. The current standard treatment for locally advanced bladder cancer is neoadjuvant cisplatin (NAC)-based chemotherapy followed by cystectomy. The significant progress being made in the genomic and molecular understandings of bladder cancer has uncovered the genetic alterations and signaling pathways that drive bladder cancer progression. These developments have led to a dramatic increase in the evaluation of molecular agents targeting at these alterations. One example is Erdafitinib, a first-in-class FGFR inhibitor being approved as second-line treatment for locally advanced or metastatic urothelial carcinoma with FGFR mutations. Immunotherapy has also been approved as second-line treatment for advanced and metastatic bladder cancer. Preclinical studies suggest targeted therapy combined with immunotherapy has the potential to markedly improve patient outcome. Given the prevalence of FGFR alternations in bladder cancer, here we review recent preclinical and clinical studies on FGFR inhibitors and analyze possible drug resistance mechanisms to these agents. We also discuss FGFR inhibitors in combination with other therapies and its potential to improve outcome.

10.
Nat Rev Cancer ; 21(2): 104-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268841

RESUMO

The field of research in bladder cancer has seen significant advances in recent years. Next-generation sequencing has identified the genes most mutated in bladder cancer. This wealth of information allowed the definition of driver mutations, and identification of actionable therapeutic targets, as well as a clearer picture of patient prognosis and therapeutic direction. In a similar vein, our understanding of the cellular aspects of bladder cancer has grown. The identification of the cellular geography and the populations of different cell types and quantifications of normal and abnormal cell types in tumours provide a better prediction of therapeutic response. Non-invasive methods of diagnosis, including liquid biopsies, have seen major advances as well. These methods will likely find considerable utility in assessing minimal residual disease following treatment and for early-stage diagnosis. A significant therapeutic impact on patients with bladder cancer is found in the use of immune checkpoint inhibitor therapeutics. These therapeutics have been shown to cure some patients with bladder cancer and significantly decrease adverse events. These developments provide patients with better monitoring opportunities, unique therapeutic options and greater hope for prolonged survival.


Assuntos
Carcinoma de Células de Transição/genética , Neoplasias da Bexiga Urinária/genética , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/terapia , Modelos Animais de Doenças , Fatores Epidemiológicos , Epigênese Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Mutação , Estadiamento de Neoplasias , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
11.
Cancer Res ; 80(2): 219-233, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31551365

RESUMO

ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.


Assuntos
Neoplasias da Mama/genética , Fator 1 de Resposta a Butirato/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias da Bexiga Urinária/genética , Regiões 3' não Traduzidas/genética , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Fator 1 de Resposta a Butirato/genética , Carcinogênese/genética , Ciclo Celular/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Fator de Transcrição E2F1/genética , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutação , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Dedos de Zinco/genética
12.
Oncogene ; 38(34): 6196-6210, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332289

RESUMO

Apoptosis of cancer cells occurs by a complex gene regulatory network. Here we showed that SOX7 was significantly downregulated in different cancer types, especially in lung and breast cancers. Low expression of SOX7 was associated with advantage stage of cancer with shorter overall survival. Cancer cells with loss of SOX7 promoted cell survival and colony formation, suppressed cellular apoptosis and produced a drug resistant phenotype against a variety of chemo/targeting therapeutic agents. Mechanistically, SOX7 induced cellular apoptosis through upregulation of genes associated with both P38 and apoptotic signaling pathway, as well as preventing the proteasome mediated degradation of pro-apoptotic protein BIM. Treatment of either a proteasome inhibitor MG132 or bortezomib, or with a p-ERK/MEK inhibitor U0126 attenuate the SOX7 promoted BIM degradation. We identified Panobinostat, an FDA approved pan-HDAC inhibitor, could elevate and restore SOX7 expression in SOX7 silenced lung cancer cells. Taken together, these data revealed an unappreciated role of SOX7 in regulation of cellular apoptosis through control of MAPK/ERK-BIM signaling.


Assuntos
Apoptose/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias/patologia , Fatores de Transcrição SOXF/fisiologia , Animais , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Sobrevivência Celular/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos SCID , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOXF/genética , Células Tumorais Cultivadas
13.
Nat Commun ; 10(1): 2230, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110180

RESUMO

LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN) induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-LNK signaling axis in this potentially devastating disease. LNK may be further explored as a potential therapeutic target for melanoma immunotherapy.


Assuntos
Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melanoma/patologia , Proteínas/metabolismo , Neoplasias Cutâneas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Interferons/imunologia , Melanoma/imunologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Transcrição STAT1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Commun ; 9(1): 3619, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190462

RESUMO

Squamous cell carcinomas (SCCs) are aggressive malignancies. Previous report demonstrated that master transcription factors (TFs) TP63 and SOX2 exhibited overlapping genomic occupancy in SCCs. However, functional consequence of their frequent co-localization at super-enhancers remains incompletely understood. Here, epigenomic profilings of different types of SCCs reveal that TP63 and SOX2 cooperatively and lineage-specifically regulate long non-coding RNA (lncRNA) CCAT1 expression, through activation of its super-enhancers and promoter. Silencing of CCAT1 substantially reduces cellular growth both in vitro and in vivo, phenotyping the effect of inhibiting either TP63 or SOX2. ChIRP analysis shows that CCAT1 forms a complex with TP63 and SOX2, which regulates EGFR expression by binding to the super-enhancers of EGFR, thereby activating both MEK/ERK1/2 and PI3K/AKT signaling pathways. These results together identify a SCC-specific DNA/RNA/protein complex which activates TP63/SOX2-CCAT1-EGFR cascade and promotes SCC tumorigenesis, advancing our understanding of transcription dysregulation in cancer biology mediated by master TFs and super-enhancers.


Assuntos
Carcinoma de Células Escamosas/genética , Elementos Facilitadores Genéticos , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos NOD , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Res ; 77(2): 390-400, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27872090

RESUMO

Current standard of care for patients with pediatric acute lymphoblastic leukemia (ALL) is mainly effective, with high remission rates after treatment. However, the genetic perturbations that give rise to this disease remain largely undefined, limiting the ability to address resistant tumors or develop less toxic targeted therapies. Here, we report the use of next-generation sequencing to interrogate the genetic and pathogenic mechanisms of 240 pediatric ALL cases with their matched remission samples. Commonly mutated genes fell into several categories, including RAS/receptor tyrosine kinases, epigenetic regulators, transcription factors involved in lineage commitment, and the p53/cell-cycle pathway. Unique recurrent mutational hotspots were observed in epigenetic regulators CREBBP (R1446C/H), WHSC1 (E1099K), and the tyrosine kinase FLT3 (K663R, N676K). The mutant WHSC1 was established as a gain-of-function oncogene, while the epigenetic regulator ARID1A and transcription factor CTCF were functionally identified as potential tumor suppressors. Analysis of 28 diagnosis/relapse trio patients plus 10 relapse cases revealed four evolutionary paths and uncovered the ordering of acquisition of mutations in these patients. This study provides a detailed mutational portrait of pediatric ALL and gives insights into the molecular pathogenesis of this disease. Cancer Res; 77(2); 390-400. ©2016 AACR.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Animais , Western Blotting , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa