Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 57(4): 662-673, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25601757

RESUMO

The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas WT1/fisiologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HL-60 , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
2.
Genes Dev ; 26(12): 1326-38, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22677546

RESUMO

Two Krebs cycle genes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), are mutated in a subset of human cancers, leading to accumulation of their substrates, fumarate and succinate, respectively. Here we demonstrate that fumarate and succinate are competitive inhibitors of multiple α-ketoglutarate (α-KG)-dependent dioxygenases, including histone demethylases, prolyl hydroxylases, collagen prolyl-4-hydroxylases, and the TET (ten-eleven translocation) family of 5-methlycytosine (5mC) hydroxylases. Knockdown of FH and SDH results in elevated intracellular levels of fumarate and succinate, respectively, which act as competitors of α-KG to broadly inhibit the activity of α-KG-dependent dioxygenases. In addition, ectopic expression of tumor-derived FH and SDH mutants inhibits histone demethylation and hydroxylation of 5mC. Our study suggests that tumor-derived FH and SDH mutations accumulate fumarate and succinate, leading to enzymatic inhibition of multiple α-KG-dependent dioxygenases and consequent alterations of genome-wide histone and DNA methylation. These epigenetic alterations associated with mutations of FH and SDH likely contribute to tumorigenesis.


Assuntos
Fumarato Hidratase/genética , Fumaratos/farmacologia , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/farmacologia , Mutação/genética , Succinato Desidrogenase/genética , Ácido Succínico/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Dioxigenases/metabolismo , Endostatinas/metabolismo , Fumaratos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genoma Humano/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/química , Camundongos , Modelos Biológicos , Ácido Succínico/química , Proteínas Supressoras de Tumor/genética
3.
Mol Cell ; 43(1): 33-44, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21726808

RESUMO

Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation regulates the stability of the gluconeogenic rate-limiting enzyme PEPCK1, thereby modulating cellular response to glucose. High glucose destabilizes PEPCK1 by stimulating its acetylation. PEPCK1 is acetylated by the P300 acetyltransferase, and this acetylation stimulates the interaction between PEPCK1 and UBR5, a HECT domain containing E3 ubiquitin ligase, therefore promoting PEPCK1 ubiquitinylation and degradation. Conversely, SIRT2 deacetylates and stabilizes PEPCK1. These observations represent an example that acetylation targets a metabolic enzyme to a specific E3 ligase in response to metabolic condition changes. Given that increased levels of PEPCK are linked with type II diabetes, this study also identifies potential therapeutic targets for diabetes.


Assuntos
Gluconeogênese/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Linhagem Celular , Células HEK293 , Células Hep G2 , Humanos , Chaperonas Moleculares/fisiologia , Estabilidade Proteica , Sirtuína 2/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
5.
Elife ; 62017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767039

RESUMO

Tumor suppressor p53 prevents cell transformation by inducing apoptosis and other responses. Homozygous TP53 deletion occurs in various types of human cancers for which no therapeutic strategies have yet been reported. TCGA database analysis shows that the TP53 homozygous deletion locus mostly exhibits co-deletion of the neighboring gene FXR2, which belongs to the Fragile X gene family. Here, we demonstrate that inhibition of the remaining family member FXR1 selectively blocks cell proliferation in human cancer cells containing homozygous deletion of both TP53 and FXR2 in a collateral lethality manner. Mechanistically, in addition to its RNA-binding function, FXR1 recruits transcription factor STAT1 or STAT3 to gene promoters at the chromatin interface and regulates transcription thus, at least partially, mediating cell proliferation. Our study anticipates that inhibition of FXR1 is a potential therapeutic approach to targeting human cancers harboring TP53 homozygous deletion.


Assuntos
Regulação Neoplásica da Expressão Gênica , Homozigoto , Neoplasias/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Cromatina , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Inibidores de Janus Quinases/análise , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição
6.
Cell Res ; 27(9): 1083-1099, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28675158

RESUMO

Both environmental cues and intracellular bioenergetic states profoundly affect intracellular pH (pHi). How a cell responds to pHi changes to maintain bioenergetic homeostasis remains elusive. Here we show that Smad5, a well-characterized downstream component of bone morphogenetic protein (BMP) signaling responds to pHi changes. Cold, basic or hypertonic conditions increase pHi, which in turn dissociates protons from the charged amino acid clusters within the MH1 domain of Smad5, prompting its relocation from the nucleus to the cytoplasm. On the other hand, heat, acidic or hypotonic conditions decrease pHi, blocking the nuclear export of Smad5, and thus causing its nuclear accumulation. Active nucleocytoplasmic shuttling of Smad5 induced by environmental changes and pHi fluctuation is independent of BMP signaling, carboxyl terminus phosphorylation and Smad4. In addition, ablation of Smad5 causes chronic and irreversible dysregulation of cellular bioenergetic homeostasis and disrupted normal neural developmental processes as identified in a differentiation model of human pluripotent stem cells. Importantly, these metabolic and developmental deficits in Smad5-deficient cells could be rescued only by cytoplasmic Smad5. Cytoplasmic Smad5 physically interacts with hexokinase 1 and accelerates glycolysis. Together, our findings indicate that Smad5 acts as a pHi messenger and maintains the bioenergetic homeostasis of cells by regulating cytoplasmic metabolic machinery.


Assuntos
Metabolismo Energético , Homeostase , Espaço Intracelular/metabolismo , Proteína Smad5/metabolismo , Transporte Ativo do Núcleo Celular , Aminoácidos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Respiração Celular , Regulação para Baixo , Técnicas de Inativação de Genes , Glicólise , Células HEK293 , Hexoquinase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Carioferinas/metabolismo , Mitocôndrias/metabolismo , Concentração Osmolar , Ligação Proteica , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Proteína Smad5/química , Proteína Smad5/deficiência , Relação Estrutura-Atividade , Temperatura , Proteína Exportina 1
7.
Cancer Cell ; 19(1): 17-30, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21251613

RESUMO

IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases. 2-HG occupies the same space as α-KG does in the active site of histone demethylases. Ectopic expression of tumor-derived IDH1 and IDH2 mutants inhibits histone demethylation and 5mC hydroxylation. In glioma, IDH1 mutations are associated with increased histone methylation and decreased 5-hydroxylmethylcytosine (5hmC). Hence, tumor-derived IDH1 and IDH2 mutations reduce α-KG and accumulate an α-KG antagonist, 2-HG, leading to genome-wide histone and DNA methylation alterations.


Assuntos
Dioxigenases/antagonistas & inibidores , Glioma/enzimologia , Glutaratos/farmacologia , Ácidos Cetoglutáricos/metabolismo , 5-Metilcitosina/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Endostatinas/metabolismo , Proteínas F-Box , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Glioma/genética , Glioma/metabolismo , Glutaratos/química , Glutaratos/metabolismo , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/farmacologia , Oxigenases de Função Mista , Modelos Moleculares , Oxalatos/farmacologia , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Oxirredutases N-Desmetilantes/metabolismo , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa