Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Environ Sci Technol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963915

RESUMO

Investigating the ternary relationship among nanoparticles (NPs), their immediate molecular environment, and test organisms rather than the direct interaction between pristine NPs and test organisms has been thrust into the mainstream of nanotoxicological research. Diverging from previous work that predominantly centered on surrounding molecules affecting the toxicity of NPs by modulating their nanoproperties, this study has unveiled a novel dimension: surrounding molecules altering bacterial susceptibility to NPs, consequently impacting the outcomes of nanobio interaction. The study found that adding nitrate as the surrounding molecules could alter bacterial respiratory pathways, resulting in an enhanced reduction of ceria NPs (nanoceria) on the bacterial surfaces. This, in turn, increased the ion-specific toxicity originating from the release of Ce3+ ions at the nanobio interface. Further transcriptome analysis revealed more mechanistic details underlying the nitrate-induced changes in the bacterial energy metabolism and subsequent toxicity patterns. These findings offer a new perspective for the deconstruction of nanobio interactions and contribute to a more comprehensive understanding of NPs' environmental fate and ecotoxicity.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341781

RESUMO

Quantum state-to-state nonadiabatic dynamics of the charge transfer reaction H+ + NO(X2Π, vi = 1, 3, ji = 0, 1) → H + NO+(X1Σ+) has been studied based on the recently constructed diabatic potential energy matrix. It was found that the vibrational excitation of reactant NO inhibits the reactivity, while the rotational excitation of reactant NO has little effect on the reaction probability. These attributes were also observed in the semi-classical trajectory calculations employed in the adiabatic representation. Such an inhibitory effect of the vibrational excitation of reactant NO was owing to lower accessibility of the conical intersection and avoided crossing regions, which are located in the wells with respect to the Π diabat, as evidenced by the analysis of the population of the time-independent wave functions. Calculated vibrational state distributions of the product show that the decrease of the reaction mainly leads to the less formation of low vibrational states (vf < 6), and the product vibrational state distributions are more evenly populated for vi = 1 and 3, suggesting a non-statistical behavior. However, the overall shapes of the product rotational distributions remain unchanged, indicating that the redistribution of energy into the rotation of product NO is sufficient in the charge transfer process between H+ and NO. While the reaction is dominated by the forward and backward scattering in differential cross sections (DCSs), consistent with the complex-forming mechanism, a clear forward bias in the DCSs appears, indicating that the occurrence of the reaction is not sufficiently long to undergo the whole phase space of the interaction configurations.

3.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953448

RESUMO

The Ã1A″ ← X̃1A' absorption spectra of HONO and DONO were simulated by a full six-dimensional quantum mechanical method based on the newly constructed potential energy surfaces for the ground and excited electronic states, which were represented by the neural network method utilizing over 36 000 ab initio energy points calculated at the multireference configuration interaction level with Davidson correction. The absorption spectrum of HONO/DONO comprises a superposition of the spectra from two isomers, namely, trans- and cis-HONO/DONO, due to their coexistence in the ground X̃1A' state. Our calculated spectra of both HONO and DONO were found to be in fairly good agreement with the experiment, including the energy positions and widths of the peaks. The dominant progression was assigned to the N=O stretch mode (20n) associated with trans-HONO/DONO, which can be attributed to the promotion of an electron to the π* orbital of N=O. Specifically, the resonances with higher vibrational quanta were found to be in the domain of the Feshbach-type resonances. The assignments of the spectra and mode specificity therein are discussed.

4.
Fish Shellfish Immunol ; 134: 108602, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758655

RESUMO

Vibrio parahaemolyticus is a devastating pathogen of clam Meretrix petechialis, which brings about huge economic losses in aquaculture breeding industry. In our previous study, we have found that Vibrio infection is closely associated with lipid metabolism of clams. In this study, an untargeted lipidomics approach was used to explore the lipid profiling changes upon Vibrio infection. The results demonstrated that the hepatopancreas of clams was composed of five lipid categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. And the content of lipid classes altered during Vibrio infection, implying that Vibrio infection altered intracellular lipid homeostasis in clams. Meanwhile, a total of 200 lipid species including 82 up-regulated and 118 down-regulated significantly were identified in response to Vibrio infection, of which ceramide (Cer), phosphatidylcholine (PC) and triglyceride (TG) accounted for the largest proportion. Notably, all Cers showed a significantly decreased trend while nearly all TG species were increased significantly during Vibrio infection, which suggested that Cer and TG could be determined as effective biomarkers. Furthermore, these differentially expressed lipid species were enriched in 20 metabolic pathways and sphingolipid metabolism was one of the most enriched pathways. These results evidenced how the lipid metabolism altered in the process of Vibrio infection and opened a new perspective on the response of marine bivalves to pathogen infection.


Assuntos
Bivalves , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Lipidômica , Lipídeos
5.
Phys Chem Chem Phys ; 25(35): 23808-23818, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37624089

RESUMO

Nonadiabatic quantum dynamics of the charge transfer (CT) reaction H+ + NO(X2Π) → H + NO+(X1Σ+) is investigated on a new diabatic potential energy matrix (PEM) including the 12A' and 22A' states of HNO+/HON+ at the multireference configuration interaction level with Davidson correction using a large basis set. The diabatization of the two coupled states was achieved by the adiabatic-to-diabatic transformation with a mixing angle and the final diabatic PEM was obtained by fitting each matrix element separately using a three-dimensional cubic spline interpolation including more than 22 000 ab initio points. The reaction was found to be dominated by the resonances supported by the double well associated with HNO+ and HON+ species, manifested by the oscillatory structures in the reaction probabilities and product rotational distributions. The product vibrational states were highly excited due to the large exothermicity of the reaction. Consistent with the complex-forming mechanism, the differential cross sections (DCSs) were found to be dominated by the forward and backward scatterings. A clear forward bias in the vibrational state resolved DCSs suggests that the non-statistical behavior of the reaction mainly comes from the low vibrational states of the product. In addition, the rate constants of the reaction in the temperature range from 50 to 500 K were computed for the first time and found to be in fairly good agreement with the available experimental results at 300 K. In particular, compared to other reactions involving neutral species in this system including N, O, and H atoms, such a CT reaction was found to be much more reactive, which has rate constants more than thirty times larger.

6.
Phys Chem Chem Phys ; 25(43): 29556-29565, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877344

RESUMO

A full-dimensional potential energy surface (PES) for the first excited state S1(1A'') of HNCO has been built up by the neural network method based on more than 36 000 ab initio points, which were calculated at the multireference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple zeta basis set. It was found that two minima, namely, trans and cis isomers of HNCO, and another seven stationary points exist on the S1 PES for the two dissociation pathways: HNCO(S1) → H + NCO/NH + CO. Particularly, a new out-of-plane transition state between the two minima was found in this work, thanks to including all the degree of freedoms for this system. The adiabatic excitation energy of the S1(1A'') ← S0(1A') transition and dissociation energies D0(HNCO → H + NCO) and D0((HNCO →NH(a1Δ) + CO) calculated on the PES are in good agreement with experimental results. In addition, based on the newly constructed S1 PES, the percentage of products H + NCO in the photodissociation of HNCO(S1) was obtained by a quasi-classical trajectory method at the photon wavelengths ranging from 190 to 225 nm, which is in reasonably good agreement with earlier theoretical and experimental results. For the dissociation lifetimes of the trajectories, they were calculated to be less than 5 ps, which is also consistent with experimental observations.

7.
Phys Chem Chem Phys ; 25(28): 18775-18787, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37431672

RESUMO

To interpret the HeI photoelectron spectrum of Cl2O (involving four lowest electronic states of Cl2O+), in this work we first constructed the associated adiabatic full-dimensional potential energy surfaces (PESs) of Cl2O(X̃1A1), Cl2O+(X̃2B1), and Cl2O+(C̃2A2) and a diabatic potential energy matrix (PEM) of Cl2O+(Ã2B2, B̃2A1, and 22A1) using the explicitly correlated internally contracted multi-reference configurational interaction with Davidson correction (MRCI-F12+Q) and neural network methods. Particularly for the Ã2B2, B̃2A1, and 22A1 states of Cl2O+ coupled in terms of conical intersection, their diabatization is achieved by the neural network approach based merely on the associated adiabatic energies. With the help of newly constructed adiabatic PESs and the diabatic PEM, the HeI photoelectron spectrum of Cl2O is further computed quantum mechanically. The calculated photoelectron spectrum is found to be in good accord with experiment. The mode specificity in the HeI photoelectron bands of Cl2O is analyzed in detail.

8.
Phys Chem Chem Phys ; 25(28): 18797-18807, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37221933

RESUMO

The 1nσ*-mediated photodissociation dynamics of thioanisole is investigated quantum mechanically using a three-dimensional model based on a newly constructed diabatic potential energy matrix. The lifetimes of the low-lying S1(1ππ*) resonances are determined and found to accord well with available experimental data. Specifically, our theoretical results demonstrate that the photodissociation of thioanisole at the low-lying S1(1ππ*) levels takes place via the heavy atom tunneling due to the higher S1/S2 conical intersection and two equivalent out-of-plane saddle points appearing on the dissociation path. The isotopic effect on the lifetimes is found to be pronounced, manifesting the nature of the tunneling process. Moreover, the geometric phase effect around the S1/S2 conical intersection is found to slightly impact the lifetimes due to the weak destructive or constructive interferences in this heavy atom tunneling, which differs significantly from the scenario in the nonadiabatic hydrogen atom tunneling. Importantly, the quantum mechanical treatment is essentially required to accurately describe the 1nσ*-mediated photodissociation dynamics of thioanisole owing to involving quantum tunneling and geometric phase effects near the conical intersection.

9.
J Phys Chem A ; 127(16): 3608-3613, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37053512

RESUMO

Conical intersections (CIs) are diabolical points in the potential energy surfaces generally caused by point-wise degeneracy of different electronic states, and give rise to the geometric phases (GPs) of molecular wave functions. Here we theoretically propose and demonstrate that the transient redistribution of ultrafast electronic coherence in attosecond Raman signal (TRUECARS) spectroscopy is capable of detecting the GP effect in excited state molecules by applying two probe pulses including an attosecond and a femtosecond X-ray pulse. The mechanism is based on a set of symmetry selection rules in the presence of nontrivial GPs. The model of this work can be realized for probing the geometric phase effect in the excited state dynamics of complex molecules with appropriate symmetries, using attosecond light sources such as free-electron X-ray lasers.

10.
Appl Opt ; 62(4): 965-971, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821153

RESUMO

We propose and experimentally demonstrate a polarization beam splitter (PBS) with excellent performance in terms of ultrahigh extinction ratio and ultralow insertion loss. The PBS consists of two dual-stage etched asymmetrical directional couplers, which are cascaded by a bend waveguide to form a folded structure. In the PBS, the fundamental transverse magnetic (T M 0) mode is efficiently cross-coupled to the cross-port, while the fundamental transverse electric (T E 0) mode outputs at the through-port. Thanks to the cascaded structure and dual-stage etching, a silicon-on-insulator-based PBS with ultrahigh extinction ratio and ultralow insertion loss is achieved. The measurement results reveal an extinction ratio beyond 25 dB and an insertion loss less than 0.7 dB within a wide bandwidth of 175 nm for the T E 0 and T M 0 modes.

11.
Ecotoxicol Environ Saf ; 251: 114564, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682184

RESUMO

Microplastics (MPs) have been widely detected in the world's water, which may pose a significant threat to the ecosystem as a whole and have been a subject of much attention because their presence impacts seas, lakes, rivers, and even the Polar Regions. There have been numerous studies that report direct adverse effects on marine organisms, but only a few have explored their ecological effects on freshwater organisms. In this field, there is still a lack of a systematic overview of the toxic effects and mechanisms of MPs on aquatic organisms, as well as a consistent understanding of the potential ecological consequences. This review describes the fate and impact on marine and freshwater aquatic organisms. Further, we examine the toxicology of MPs in order to uncover the relationship between aquatic organism responses to MPs and ecological disorders. In addition, an overview of the factors that may affect the toxicity effects of MPs on aquatic organisms was presented along with a brief examination of their identification and characterization. MPs were discussed in terms of their physicochemical properties in relation to their toxicological concerns regarding their bioavailability and environmental impact. This paper focuses on the progress of the toxicological studies of MPs on aquatic organisms (bacteria, algae, Daphnia, and fish, etc.) of different trophic levels, and explores its toxic mechanism, such as behavioral alternations, metabolism disorders, immune response, and poses a threat to the composition and stability of the ecosystem. We also review the main factors affecting the toxicity of MPs to aquatic organisms, including direct factors (polymer types, sizes, shapes, surface chemistry, etc.) and indirect factors (persistent organic pollutants, heavy metal ions, additives, and monomer, etc.), and the future research trends of MPs ecotoxicology are also pointed out. The findings of this study will be helpful in guiding future marine and freshwater rubbish studies and management strategies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Ecotoxicologia , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos , Lagos , Monitoramento Ambiental
12.
Ecotoxicol Environ Saf ; 249: 114431, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521269

RESUMO

The aquatic system is a major sink for engineered nanomaterials released into the environment. Here, we assessed the toxicity of graphene oxide (GO) using the freshwater planarian Dugesia japonica, an invertebrate model that has been widely used for studying the effects of toxins on tissue regeneration and neuronal development. GO not only impaired the growth of normal (homeostatic) worms, but also inhibited the regeneration processes of regenerating (amputated) worms, with LC10 values of 9.86 mg/L and 9.32 mg/L for the 48-h acute toxicity test, respectively. High concentration (200 mg/L) of GO killed all the worms after 3 (regenerating) or 4 (homeostasis) days of exposure. Whole-mount in situ hybridization (WISH) and immunofluorescence analyses suggest GO impaired stem cell proliferation and differentiation, and subsequently caused cell apoptosis and oxidative DNA damage during planarian regeneration. Mechanistic analysis suggests that GO disturbed the antioxidative system (enzymatic and non-enzymatic) and energy metabolism in the planarian at both molecular and genetic levels, thus causing reactive oxygen species (ROS) over accumulation and oxidative damage, including oxidative DNA damage, loss of mitochondrial membrane integrity, lack of energy supply for cell differentiation and proliferation leading to retardance of neuron regeneration. The intrinsic oxidative potential of GO contributes to the GO-induced toxicity in planarians. These data suggest that GO in aquatic systems can cause oxidative stress and neurotoxicity in planarians. Overall, regenerated tissues are more sensitive to GO toxicity than homeostatic ones, suggesting that careful handling and appropriate decisions are needed in the application of GO to achieve healing and tissue regeneration.


Assuntos
Planárias , Animais , Planárias/genética , Homeostase/fisiologia , Apoptose , Oxirredução , Água Doce
13.
Faraday Discuss ; 238(0): 249-265, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792611

RESUMO

The unimolecular dissociation of formaldehyde is studied via excitation to the à band at several excitation energies from just below the ground state radical dissociation threshold to 5000 cm-1 above it. CO product rotational distributions, photofragment excitation spectroscopy and state-correlated slice imaging results are combined with quasi-classical trajectory calculations to reveal manifestations of quantum effects in this complex dissociation process involving interactions among radical, molecular, and roaming pathways. Evidence of nodal structure at the tight transition state to molecular products is investigated and correlations between the CO rotational and H2 vibrational distributions are used to suggest the transition state modes that are responsible. A large modulation of the roaming yield previously identified and associated with roaming resonances at the onset of the H + HCO(v1,v2,v3 = 0,0,0) product channel suggests a similar origin for enhanced roaming and a roaming yield that is strongly dependent on parent rotation on the 2641 band just 15 cm-1 above the H + HCO(0,2,1) threshold. Similar resonances are predicted on other bands that share near coincident energies with HCO product vibrational thresholds.

14.
Environ Sci Technol ; 55(21): 14649-14657, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652129

RESUMO

The time-course association of soil physicochemical properties and fate of CeO2 nanoparticles (NPs) is not well understood. This study for the first time investigated the dissolution and retention of CeO2 NPs (<25 nm) during soil short-term (6 h) and long-term (30 d) aging processes with dynamic redox conditions. Under the additional reductant-induced initial reductive condition, theoretically, up to 220‰ of Ce(IV) was temporarily reductively dissolved within 10 min, accompanied by a slow retention process (180 min) of Ce species in soil solutions. Conversely, the dissolution and slow retention of Ce species were not significant in soil solutions without added reductant. X-ray absorption near edge spectroscopy (XANES) shows that most of Ce species were present as Ce(IV) (94.0%-97.8%) in all soils after a long-term aging process. These results indicate that the soil dynamic redox conditions induced by oxidant/reductant intrinsically determined the different time-course dissolution and retention of CeO2 NPs, highlighting the occasional reductive condition in soil solution that may contribute to the migration and diffusion of Ce species. The time-course study should be also adopted to develop a comprehensive understanding of the nano-soil interactions.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Oxirredução , Solo , Solubilidade
15.
Phys Chem Chem Phys ; 23(44): 24962-24983, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34473156

RESUMO

Nonadiabatic dynamics, which goes beyond the Born-Oppenheimer approximation, has increasingly been shown to play an important role in chemical processes, particularly those involving electronically excited states. Understanding multistate dynamics requires rigorous quantum characterization of both electronic and nuclear motion. However, such first principles treatments of multi-dimensional systems have so far been rather limited due to the lack of accurate coupled potential energy surfaces and difficulties associated with quantum dynamics. In this Perspective, we review recent advances in developing high-fidelity analytical diabatic potential energy matrices for quantum dynamical investigations of polyatomic uni- and bi-molecular nonadiabatic processes, by machine learning of high-level ab initio data. Special attention is paid to methods of diabatization, high fidelity construction of multi-state coupled potential energy surfaces and property surfaces, as well as quantum mechanical characterization of nonadiabatic nuclear dynamics. To illustrate the tremendous progress made by these new developments, several examples are discussed, in which direct comparison with quantum state resolved measurements led to either confirmation of the observation or sometimes reinterpretation of the experimental data. The insights gained in these prototypical systems greatly advance our understanding of nonadiabatic dynamics in chemical systems.

16.
J Chem Phys ; 154(4): 044308, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514083

RESUMO

The B̃1A1 ← X̃1A1 absorption spectra of propargyl cations H2C3H+ and D2C3D+ were simulated by an efficient two-dimensional (2D) quantum model, which includes the C-C stretch (v5) and the C≡C stretch (v3) vibrational modes. The choice of two modes was based on a scheme that can identify the active modes quantitively by examining the normal coordinate displacements (∆Q) directly based on the ab initio equilibrium geometries and frequencies of the X̃1A1 and B̃1A1 states of H2C3H+. The spectrum calculated by the 2D model was found to be very close to those calculated by all the higher three-dimensional (3D) quantum models (including v5, v3, and another one in 12 modes of H2C3H+), which validates the 2D model. The calculated B̃1A1 ← X̃1A1 absorption spectra of both H2C3H+ and D2C3D+ are in fairly good agreement with experimental results.

17.
Small ; 16(21): e1907435, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174030

RESUMO

The release of metal ions may play an important role in toxicity of metal-based nanoparticles. In this report, a life cycle study is carried out in a greenhouse, to compare the effects of ceria nanoparticles (NPs) and Ce3+ ions at 0, 50, 100, and 200 mg Ce kg-1 on plant growth, biological and physiological parameters, and nutritional value of soil-grown common bean plants. Ceria NPs have a tendency to negatively affect photosynthesis, but the effect is not statistically significant. Ce3+ ionic treatments at 50, 100, and 200 mg Ce kg-1 result in increases of 1.25-, 0.66-, and 1.20-fold in stomatal conductance, respectively, relative to control plants. Both ceria NPs and Ce3+ ions disturb the homeostasis of antioxidant defense system in the plants, but only 200 mg Ce kg-1 ceria NPs significantly induce lipid peroxidation in the roots. Ceria NP treatments tend to reduced fresh weight and to increase mineral contents of the green pods, but have no effect on the organic nutrient contents. On the contrary, Ce3+ ion treatments modify the organic compositions and thus alter the nutritional quality and flavor of the green pods. These results suggest that the two Ce forms may have different mechanisms on common bean plants.


Assuntos
Cério , Nanopartículas Metálicas , Valor Nutritivo , Phaseolus , Cério/farmacologia , Nanopartículas Metálicas/química , Valor Nutritivo/efeitos dos fármacos , Phaseolus/efeitos dos fármacos , Solo
18.
Chembiochem ; 21(16): 2373-2380, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32227558

RESUMO

A lysozyme (Lys)-assisted liquid-phase exfoliation technique was designed to synthesize MoS2 nanosheets (MoS2 -Lys NSs). As a novel nanozyme antibacterial agent with high peroxidase-like catalyst activity, MoS2 -Lys NSs showed good antibacterial efficacy against both Gram-negative ampicillin-resistant Escherichia coli (Ampr E. coli) and Gram-positive Bacillus subtilis. A possible antibacterial mechanism is also proposed. This work provides an effective antibacterial strategy based on the MoS2 -Lys NSs antibacterial agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Molibdênio/química , Molibdênio/farmacologia , Nanoestruturas/química , Bacillus subtilis/efeitos dos fármacos , Catálise , Escherichia coli/efeitos dos fármacos
19.
Acc Chem Res ; 52(2): 501-509, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30707546

RESUMO

It is now well established that conical intersections play an essential role in nonadiabatic radiationless decay where their double-cone topography causes them to act as efficient funnels channeling wave packets from the upper to the lower adiabatic state. Until recently, little attention was paid to the effect of conical intersections on dynamics on the lower state, particularly when the total energy involved is significantly below that of the conical intersection seam. This energetic deficiency is routinely used as a sufficient condition to exclude consideration of excited states in ground state dynamics. In this account, we show that, this energy criterion notwithstanding, energy inaccessible conical intersections can and do exert significant influence on lower state dynamics. The origin of this influence is the geometric phase, a signature property of conical intersections, which is the fact that the real-valued electronic wave function changes sign when transported along a loop containing a conical intersection, making the wave function double-valued. This geometric phase is permitted by an often neglected property of the real-valued adiabatic electronic wave function; namely, it is determined only up to an overall sign. Noting that in order to change sign a normalized, continuous function must go through zero, for loops of ever decreasing radii, demonstrating the need for an electronic degeneracy (intersection) to accompany the geometric phase. Since the total wave function must be single-valued a compensating geometry dependent phase needs to be included in the total electronic-nuclear wave function. This Account focuses on how this consequence of the geometric phase can modify nuclear dynamics energetically restricted to the lower state, including tunneling dynamics, in directly measurable ways, including significantly altering tunneling lifetimes, thus confounding the relation between measured lifetimes and barrier heights and widths, and/or completely changing product rotational distributions. Some progress has been made in understanding the origin of this effect. It has emerged that for a system where the lower adiabatic potential energy surface exhibits a topography comprised of two saddle points separated by a high energy conical intersection, the effect of the geometric phase can be quite significant. In this case topologically distinct paths through the two adiabatic saddle points may lead to interference. This was pointed out by Mead and Truhlar almost 50 years ago and denoted the Molecular Aharonov-Bohm effect. Still, the difficulty in anticipating a significant geometric phase effect in tunneling dynamics due to energetically inaccessible conical intersections leads to the attribute insidious that appears in the title of this Account. Since any theory is only as relevant as the prevalence of the systems it describes, we include in this Account examples of real systems where these effects can be observed. The accuracy of the reviewed calculations is high since we use fully quantum mechanical dynamics and construct the geometric phase using an accurate diabatic state fit of high quality ab initio data, energies, energy gradients, and interstate couplings. It remains for future work to establish the prevalence of this phenomenon and its deleterious effects on the conventional wisdom discussed in this work.

20.
Environ Sci Technol ; 54(6): 3181-3190, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083855

RESUMO

The mechanism of graphene-based nanomaterial (GBM)-induced phytotoxicity and its association with the GBM physicochemical properties are not yet fully understood. The present study compared the effects of graphene oxide (GO) and reduced GO (rGO) on rice seedling growth under hydroponic conditions for 3 weeks. GO at 100 and 250 mg/L reduced shoot biomass (by 25 and 34%, respectively) and shoot elongation (by 17 and 43%, respectively) and caused oxidative damage, while rGO exhibited no overt effect except for the enhancement of the antioxidant enzyme activities, suggesting that the surface oxygen content is a critical factor affecting the biological impacts of GBMs. GO treatments (100 and 250 mg/L) enhanced the iron (Fe) translocation and caused excessive Fe accumulation in shoots (2.2 and 3.6 times higher than control), which was found to be the main reason for the oxidative damage in shoots. GO-induced acidification of the nutrient solution was the main driver for the Fe overload in plants. In addition to the antioxidant regulators, the plants triggered other pathways to defend against the Fe toxicity via downregulation of the Fe transport associated metabolites (mainly coumarins and flavonoids). Plant root exudates facilitated the reduction of toxic GO to nontoxic rGO, acting as another route for plant adaption to GO-induced phytotoxicity. This study provides new insights into the mechanism of the phytotoxicity of GBMs. It also provides implications for the agricultural application of GBM that the impacts of GBMs on the uptake of multiple nutrients in plants should be assessed simultaneously and reduced forms of GBMs are preferential to avoid toxicity.


Assuntos
Grafite , Sobrecarga de Ferro , Nanoestruturas , Oryza , Poluentes do Solo , Humanos , Concentração de Íons de Hidrogênio , Estresse Oxidativo , Raízes de Plantas , Plântula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa