RESUMO
Statistically based experimental designs were applied to optimize the fermentation medium and cultural conditions for the maximization of neutral protease using three agroindustrial residues (cassava pulp, soybean meal, and wheat bran) and Bacillus subtilis DES-59. The Plackett-Burman design was used to evaluate the effects of variables such as the concentration of substrates, initial pH, shaker's rotating speed, temperature, inoculum size, and incubation time. Among the eight parameters, three significant variables (cassava pulp, soybean meal, and inoculum size) were selected for the optimization study, in which a central composite design was used to optimize the concentrations of cassava pulp and soybean meal and inoculum size and investigate the interactive effects of the three variables. The optimal parameters obtained from response surface methodology are 37.78 g/L of cassava pulp, 15 g/L of soybean meal, and 6.5% (v/v) of inoculum size, respectively, resulting in a maximum neutral protease activity of 4107 ± 122 U/mL.
Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Metaloendopeptidases/biossíntese , Metaloendopeptidases/metabolismo , Proteínas de Bactérias/biossíntese , Biotecnologia/métodos , Fermentação/fisiologia , Concentração de Íons de Hidrogênio , Glycine max/metabolismo , TemperaturaRESUMO
PURPOSE: To evaluate the feasibility of using mpMRI image features predicted by AI algorithms in the prediction of clinically significant prostate cancer (csPCa). MATERIALS AND METHODS: This study analyzed patients who underwent prostate mpMRI and radical prostatectomy (RP) at the Affiliated Hospital of Jiaxing University between November 2017 and December 2022. The clinical data collected included age, serum prostate-specific antigen (PSA), and biopsy pathology. The reference standard was the prostatectomy pathology, and a Gleason Score (GS) of 3 + 3 = 6 was considered non-clinically significant prostate cancer (non-csPCa), while a GS ≥ 3 + 4 was considered csPCa. A pre-trained AI algorithm was used to extract the lesion on mpMRI, and the image features of the lesion and the prostate gland were analyzed. Two logistic regression models were developed to predict csPCa: an MR model and a combined model. The MR model used age, PSA, PSA density (PSAD), and the AI-predicted MR image features as predictor variables. The combined model used biopsy pathology and the aforementioned variables as predictor variables. The model's effectiveness was evaluated by comparing it to biopsy pathology using the area under the curve (AUC) of receiver operation characteristic (ROC) analysis. RESULTS: A total of 315 eligible patients were enrolled with an average age of 70.8 ± 5.9. Based on RP pathology, 18 had non-csPCa, and 297 had csPCa. PSA, PSAD, biopsy pathology, and ADC value of the prostate outside the lesion (ADCprostate) varied significantly across different ISUP grade groups of RP pathology (P < 0.001). Other clinical variables and image features did not vary significantly across different ISUP grade groups (P > 0.05). The MR model included PSAD, the ratio of ADC value between the lesion and the prostate outside the lesion (ADClesion/prostate), the signal intensity ratio of DWI between the lesion and the prostate outside the lesion (DWIlesion/prostate), and the ratio of DWIlesion/prostate to ADClesion/prostate. The combined model included biopsy pathology, ADClesion/prostate, mean signal intensity of the lesion on DWI (DWIlesion), DWI signal intensity of the prostate outside the lesion (DWIprostate), and signal intensity ratio of DWI between the lesion and the prostate outside the lesion (DWIlesion/prostate). The AUC of the MR model (0.830, 95% CI 0.743, 0.916) was not significantly different from that of biopsy pathology (0.820, 95% CI 0.728, 0.912, P = 0.884). The AUC of the combined model (0.915, 95% CI 0.849, 0.980) was higher than that of the biopsy pathology (P = 0.042) and MR model (P = 0.031). CONCLUSION: The aggressiveness of prostate cancer can be effectively predicted using AI-extracted image features from mpMRI images, similar to biopsy pathology. The prediction accuracy was improved by combining the AI-extracted mpMRI image features with biopsy pathology, surpassing the performance of biopsy pathology alone.
RESUMO
We investigated the therapeutic effects of superoxide dismutase (SOD) from thermophilic bacterium HB27 on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and its underlying mechanisms. A Sprague-Dawley rat model of CP/CPPS was prepared and then administered saline or Thermus thermophilic (Tt)-SOD intragastrically for 4 weeks. Prostate inflammation and fibrosis were analyzed by hematoxylin and eosin staining, and Masson staining. Alanine transaminase (ALT), aspartate transaminase (AST), serum creatinine (CR), and blood urea nitrogen (BUN) levels were assayed for all animals. Enzyme-linked immunosorbent assays (ELISA) were performed to analyze serum cytokine concentrations and tissue levels of malondialdehyde, nitric oxide, SOD, catalase, and glutathione peroxidase. Reactive oxygen species levels were detected using dichlorofluorescein diacetate. The messenger ribonucleic acid (mRNA) expression of tissue cytokines was analyzed by reverse transcription polymerase chain reaction (RT-PCR), and infiltrating inflammatory cells were examined using immunohistochemistry. Nuclear factor-κB (NF-κB) P65, P38, and inhibitor of nuclear factor-κBα (I-κBα) protein levels were determined using western blot. Tt-SOD significantly improved histopathological changes in CP/CPPS, reduced inflammatory cell infiltration and fibrosis, increased pain threshold, and reduced the prostate index. Tt-SOD treatment showed no significant effect on ALT, AST, CR, or BUN levels. Furthermore, Tt-SOD reduced inflammatory cytokine expression in prostate tissue and increased antioxidant capacity. This anti-inflammatory activity correlated with decreases in the abundance of cluster of differentiation 3 (CD3), cluster of differentiation 45 (CD45), and macrophage inflammatory protein 1α (MIP1α) cells. Tt-SOD alleviated inflammation and oxidative stress by reducing NF-κB P65 and P38 protein levels and increasing I-κBα protein levels. These findings support Tt-SOD as a potential drug for CP/CPPS.
Assuntos
Dor Crônica , Prostatite , Animais , Citocinas/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Dor Pélvica/patologia , Prostatite/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase , SíndromeRESUMO
Obesity-induced inflammation, characterized by augmented infiltration and altered balance of macrophages, is a critical component of systemic insulin resistance. Chemokine-chemokine receptor system plays a vital role in the macrophages accumulation. CC-Chemokine Receptor-like 2 (Ccrl2) is one of the receptors of Chemerin, which is a member of atypical chemokine receptors (ACKR) family, reported taking part in host immune responses and inflammation-related conditions. In our study, we found ccrl2 expression significantly elevated in visceral adipose tissue (VAT) of high fat diet (HFD) induced obese mice and ob/ob mice. Systemic deletion of Ccrl2 gene aggravated HFD induced obesity and insulin resistance and ccrl2 -/- mice showed aggravated VAT inflammation and increased M1/M2 macrophages ratio, which is due to the increase of macrophages chemotaxis in Ccrl2 deficiency mice. Cumulatively, these results indicate that Ccrl2 has a critical function in obesity and obesity-induced insulin resistance via mediating macrophages chemotaxis.
RESUMO
PURPOSE: To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. METHODS: Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. RESULTS: Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. CONCLUSIONS: Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.
Assuntos
Proteínas de Bactérias , Cistite , Superóxido Dismutase , Animais , Proteínas de Bactérias/uso terapêutico , Cistite/induzido quimicamente , Cistite/terapia , Ácido Clorídrico/efeitos adversos , Inflamação/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/uso terapêutico , Bexiga Urinária/patologiaRESUMO
To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo.