Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Idioma
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 42(4): 1847-1860, 2021 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-33742820

RESUMO

In this work, the influence of an integrated method based on calcium nitrate, denitrifying bacteria, and zirconium-modified zeolite (CN+DB+ZZ) on the transport and transformation of nitrogen (N) and phosphorus (P) in sediments was investigated, and the risk of nitrate release from the calcium nitrate-injected sediment was evaluated. The effects of the single calcium nitrate injection (CN), calcium nitrate, and denitrifying bacteria combined treatment (CN+DB) and the combined treatment using calcium nitrate injection and zirconium-modified zeolite capping (CN+ZZ) on the mobilization of N and P in sediment were compared, and the nitrate releasing risk of these methods was also evaluated. The results indicated that although CN treatment could effectively control the P release from the sediment, this method could not effectively control the release of ammonium-nitrogen from sediment and has a high risk of releasing nitrate-nitrogen. The CN+DB combined method not only could effectively control the liberation of sedimentary P but also reduce the risk of nitrate-nitrogen release from the calcium nitrate-injected sediment compared with the single CN method. However, the CN+DB combined method could not effectively control the release of ammonium-nitrogen from the sediment. The CN+ZZ combined treatment not only could effectively prevent the release of sedimentary P but could also greatly reduce the release of ammonium-nitrogen from the sediment. However, the CN+ZZ combined method could result in a substantial release of nitrate-nitrogen from the calcium nitrate-injected sediment. The CN+DB+ZZ combined technology could effectively control the release of P from sediment as well as greatly reduce the risk of ammonium-nitrogen release from the sediment. Furthermore, the CN+DB+ZZ combined method resulted in a significant reduction of nitrate-nitrogen released from the calcium nitrate-injected sediment compared with the CN and CN+ZZ treatment methods. The prevention of the dissolution of the P-bound iron oxide/hydroxide in the sediment, the reduction of redox-sensitive P in sediment, and the improvement of the phosphate and ammonium adsorption abilities of sediment by the CN+DB+ZZ combined method is critical to control the release of phosphorus and ammonium-nitrogen from sediment using this method. Results of this study reveal that the CN+DB+ZZ combined technology could be a promising method for the control of phosphorus and ammonium-nitrogen release from sediments.


Assuntos
Poluentes Químicos da Água , Zeolitas , Bactérias , Compostos de Cálcio , Sedimentos Geológicos , Nitratos , Nitrogênio/análise , Fósforo , Poluentes Químicos da Água/análise , Zircônio
2.
Huan Jing Ke Xue ; 41(3): 1296-1307, 2020 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-32608631

RESUMO

The use of calcite (CA) as an active capping material has high potential for controlling the release of phosphorus (P) from sediments, but its efficiency still needs to be enhanced. To address this issue, an iron-modified CA (Fe-CA) was prepared, the removal performance of phosphate from aqueous solution by Fe-CA was studied, and the efficiency of the use of Fe-CA as an active capping material to prevent the liberation of P from sediments was investigated. The results showed that Fe-CA exhibited much higher phosphate removal ability than CA. The phosphate removal efficiency of Fe-CA increased with an increase in the Fe-CA dosage. Increasing the initial phosphate concentration gave rise to an increase in the amount of phosphate removed by Fe-CA, and the maximum amount of phosphate removed by Fe-CZ reached 3.09 mg·g-1. Sediment capping with Fe-CA could effectively control the release of soluble reactive P (SRP) from the sediment into the overlying water, leading to a very low concentration of SRP in the overlying water. Additionally, the Fe-CA capping also resulted in the transformation of a small amount of redox-sensitive P (BD-P) and metal-oxide-bound P (NaOH-rP) in sediments to residual P (Res-P), leading to a slight increase in the stability of P in the sediment. The overwhelming majority (90.8%) of P bound by the Fe-CA capping layer existed in the form of NaOH-rP, calcium-bound P (HCl-P), and Res-P, which are relatively very stable. Furthermore, the percentage of bioavailable P (BAP) as a proportion of total extractable P in the P-bound Fe-CA capping layer was very low, and the bound P was re-released with difficulty into the water column for algae growth. Compared to CA capping, the efficiency for the control of sedimentary P release into the overlying water by Fe-CA capping was much higher, and the stability of P bound by the Fe-CA capping layer was also higher. The results of this work indicate that Fe-CA is a very promising active capping material for the interception of the release of P from sediments into the overlying water.

3.
Huan Jing Ke Xue ; 41(5): 2281-2291, 2020 May 08.
Artigo em Zh | MEDLINE | ID: mdl-32608846

RESUMO

Understanding the effect of calcite and chlorapatite mixture (CA/ClAP) addition on the mobilization of phosphorus (P) in sediments is crucial to the application of CA/ClAP as an amendment material to control the release of P from sediments. To address this issue, batch experiments were conducted to investigate the removal performance of phosphate by CA/ClAP, and sediment incubation experiments were carried out to study the effect of CA/ClAP addition on the mobilization of P in sediments. The results showed that the removal ability of phosphate by CA/ClAP was much higher than those by calcite and chlorapatite, and the kinetics data of phosphate removal by CA/ClAP followed a pseudo-second-order kinetics model. Increasing calcite and chlorapatite dosages would be favorable for the removal of phosphate by CA/ClAP, and coexisting Ca2+ enhanced the phosphate removal. CA/ClAP addition not only reduced the concentration of soluble reactive P (SRP) in the overlying water, but also decreased the concentration of SRP in the pore water. The addition of CA/ClAP in sediments caused an increase in the content of P in the sediments, but the increased P mainly existed in the form of calcium-bound P (HCl-P), which was difficult to be re-released into the water column under anoxic and common pH (5-9) conditions. The reduction of SRP in the pore water after the addition of CA/ClAP played an important role in the prevention of sedimentary P liberation into the overlying water by the CA/ClAP amendment. The results of this work indicate that CA/ClAP can be used as an amendment material for interception of the release of P from sediments into overlying water.

4.
Huan Jing Ke Xue ; 41(1): 273-283, 2020 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-31854928

RESUMO

We determine the efficiency and mechanism of Mg/Fe layered double hydroxides (Mg/Fe-LDH) addition for the control of phosphorus (P) release from sediments by studying the adsorption behavior and mechanism of phosphate from an aqueous solution on Mg/Fe-LDH. The impact of Mg/Fe-LDH addition on the mobilization of P in sediments as well as the adsorptive removal of phosphate by sediments is investigated, and the stabilization of P bound by Mg/Fe-LDH is also evaluated. Results showed that the kinetics data of phosphate adsorption onto Mg/Fe-LDH fitted better with the Elovich kinetics model than with the pseudo-first-order and pseudo-second-order kinetics models, and that the Freundlich and Dubinin-Radushkevich models were more suitable for describing the adsorption isotherm behavior of phosphate on Mg/Fe-LDH than the Langmuir model. Phosphate adsorption possessed a wide effective pH range of 4-10. Coexisting Ca2+ and Mg2+ enhanced phosphate adsorption onto Mg/Fe-LDH, while coexisting Na+, K+, and Cl- had negligible impacts on the phosphate adsorption. The presence of SO42- and HCO3- in aqueous solution inhibited the adsorption of phosphate on Mg/Fe-LDH. The phosphate adsorption mechanisms were deduced to be anion exchange, electrostatic attraction, ligand exchange and inner-sphere complex formation. The addition of Mg/Fe-LDH into sediments not only greatly reduced the concentration of reactive soluble P (SRP) in the overlying water, but also significantly decreased the level of SRP in the pore water. In addition, Mg/Fe-LDH addition also increased the adsorption capacity for the sediments, and the phosphate adsorption ability for the Mg/Fe-LDH-amended sediments increased with increased amendment dosage. Almost half of the phosphate bound by Mg/Fe-LDH existed in the form of relatively stable P, i.e., metal oxide-bound P (NaOH-rP), which was difficult to release back into the water column under normal pH and anoxic conditions. Nearly half of the phosphate bound by Mg/Fe-LDH existed in the form of easily released P, i.e., NH4Cl extractable P (NH4Cl-P) and redox-sensitive P (BD-P), which had a high risk of re-releasing into the water column. We conclude that it is very necessary for Mg/Fe-LDH to be recycled from the sediments after the application of Mg/Fe-LDH as an amendment to control sedimentary P liberation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa