Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(5): 1294-1303, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048726

RESUMO

The bioreduction capacity of Cr(VI) by Shewanella is mainly governed by its bidirectional extracellular electron transfer (EET). However, the low bidirectional EET efficiency restricts its wider applications in remediation of the environments contaminated by Cr(VI). Cyclic adenosine 3',5'-monophosphate (cAMP) commonly exists in Shewanella strains and cAMP-cyclic adenosine 3',5'-monophosphate receptor protein (CRP) system regulates multiple bidirectional EET-related pathways. This inspires us to strengthen the bidirectional EET through elevating the intracellular cAMP level in Shewanella strains. In this study, an exogenous gene encoding adenylate cyclase from the soil bacterium Beggiatoa sp. PS is functionally expressed in Shewanella oneidensis MR-1 (the strain MR-1/pbPAC) and a MR-1 mutant lacking all endogenous adenylate cyclase encoding genes (the strain Δca/pbPAC). The engineered strains exhibit the enhanced bidirectional EET capacities in microbial electrochemical systems compared with their counterparts. Meanwhile, a three times more rapid reduction rate of Cr(VI) is achieved by the strain MR-1/pbPAC than the control in batch experiments. Furthermore, a higher Cr(VI) reduction efficiency is also achieved by the strain MR-1/pbPAC in the Cr(VI)-reducing biocathode experiments. Such a bidirectional enhancement is attributed to the improved production of cAMP-CRP complex, which upregulates the expression levels of the genes encoding the c-type cytochromes and flavins synthetic pathways. Specially, this strategy could be used as a broad-spectrum approach for the other Shewanella strains. Our results demonstrate that elevating the intracellular cAMP levels could be an efficient strategy to enhance the bidirectional EET of Shewanella strains and improve their pollutant transformation capacity.


Assuntos
Cromo , AMP Cíclico , Shewanella , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Beggiatoa/enzimologia , Beggiatoa/genética , Cromo/análise , Cromo/metabolismo , AMP Cíclico/análise , AMP Cíclico/metabolismo , Transporte de Elétrons , Engenharia Metabólica , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella/citologia , Shewanella/genética , Shewanella/metabolismo
2.
Front Cardiovasc Med ; 10: 1126157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283573

RESUMO

Objective: Observational studies have shown a correlation between unpleasant emotions and coronary atherosclerosis, but the underlying causal linkages are still uncertain. We conducted a Mendelian randomization (MR) investigation on two samples for this purpose. Methods: In genome-wide association studies in the UK Biobank (total = 459,561), we selected 40 distinct single-nucleotide polymorphisms (SNPs) related to unpleasant emotions as genome-wide statistically significant instrumental variables. FinnGen consortium provided summary-level data on coronary atherosclerosis for 211,203 individuals of Finnish descent. MR-Egger regression, the inverse variance weighted technique (IVW), and the weighted median method were used in the process of conducting data analysis. Results: There was sufficient evidence to establish a causal connection between unpleasant emotions and coronary atherosclerosis risk. For each unit increase in the log-odds ratio of unpleasant feelings, the odds ratios were 3.61 (95% CI: 1.64-7.95; P = 0.001). The outcomes of sensitivity analyses were comparable. There was no indication of heterogeneity or directional pleiotropy. Conclusion: Our findings provide causal evidence for the effects of unpleasant emotions on coronary atherosclerosis.

3.
Natl Sci Rev ; 10(5): nwad031, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37056431

RESUMO

Bacteria can be genetically engineered to act as therapeutic delivery vehicles in the treatment of tumors, killing cancer cells or activating the immune system. This is known as bacteria-mediated cancer therapy (BMCT). Tumor invasion, colonization and tumor regression are major biological events, which are directly associated with antitumor effects and are uncontrollable due to the influence of tumor microenvironments during the BMCT process. Here, we developed a genetic circuit for dynamically programming bacterial lifestyles (planktonic, biofilm or lysis), to precisely manipulate the process of bacterial adhesion, colonization and drug release in the BMCT process, via hierarchical modulation of the lighting power density of near-infrared (NIR) light. The deep tissue penetration of NIR offers us a modality for spatio-temporal and non-invasive control of bacterial genetic circuits in vivo. By combining computational modeling with a high-throughput characterization device, we optimized the genetic circuits in engineered bacteria to program the process of bacterial lifestyle transitions by altering the illumination scheme of NIR. Our results showed that programming intratumoral bacterial lifestyle transitions allows precise control of multiple key steps throughout the BMCT process and therapeutic efficacy can be greatly improved by controlling the localization and dosage of therapeutic agents via optimizing the illumination scheme.

4.
DNA Cell Biol ; 39(6): 938-948, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32283037

RESUMO

Diabetic nephropathy (DN) is characterized by excessive accumulation of extracellular matrix leading to early thickening of glomerular and tubular basement membrane. C1q/tumor necrosis factor (TNF)-related protein-9 (CTRP9) was recently identified as an adiponectin paralog of superior prominence. CTRP9 is an anti-inflammatory, antioxidant, vasodilation and atheroprotective adipose cytokine that share a similar metabolic regulatory function as adiponectin. Additionally, CTRP9 inhibits apoptosis of endothelial cells, decreases blood glucose level, and increases insulin sensitivity. However, the renoprotective effects of CTRP9 and the underlying molecular mechanisms in DN have not been explored. This study examined the effects of CTRP9 on DN in diabetic db/db mice through adenovirus-mediated overexpression. From the results, CTRP9 ameliorated renal dysfunction and injury at the structural and functional level in diabetic db/db mice. Additionally, CTRP9 inhibited glomerular and tubular glycogen accumulation, fibrosis, relieved hyperglycemia-mediated oxidative stress, and apoptosis. This is the first study to report on therapeutic effects of CTRP9 on DN, presenting a potentially effective clinical treatment method for DN patients.


Assuntos
Adiponectina/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Glicoproteínas/metabolismo , Rim/patologia , Adiponectina/genética , Animais , Apoptose , Fibrose , Regulação da Expressão Gênica , Glicoproteínas/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Estresse Oxidativo , Receptores de Adiponectina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Chem Commun (Camb) ; 53(6): 1084-1087, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28044162

RESUMO

A highly efficient tandem hydroamination and cyclization reaction of 2-trifluoromethyl-1,3-enynes with primary amines leading to 4-trifluoromethyl-3-pyrrolines was developed by using AgNO3 as a catalyst under mild reaction conditions. This new method is compatible with alkyl, aryl, and allyl primary amines, representing an atom-economical protocol for the construction of 4-trifluoromethyl-3-pyrrolines for the first time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa