Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 31(7): 2286-2295, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36805082

RESUMO

Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by loss of function mutations in maternally expressed UBE3A. No gene-specific treatment is available for patients so far. Although intact and transcriptionally active, paternally inherited UBE3A is silenced by elongation of antisense long noncoding RNA UBE3A-ATS in neurons. Here, we demonstrated that RNA targeting of paternal Ube3a-ATS with a high-fidelity CRISPR-Cas13 (hfCas13x.1) system could restore Ube3a expression to similar levels as that of maternal Ube3a in the cultured mouse neurons. Furthermore, injection into lateral ventricles with neuron-specific hSyn1 promoter-driven hfCas13x.1 packaged in adeno-associated virus (AAV-PHP.eb) could restore paternal Ube3a expression in cortex and hippocampus of neonatal AS mice for up to 4 months after treatment. Behavioral tests showed that expression of paternal Ube3a significantly alleviated AS-related symptoms, including obesity and motor function. Our results suggested that hfCas13x.1-mediated suppression of the Ube3a-ATS lncRNA potentially serves as a promising targeted intervention for AS.


Assuntos
Síndrome de Angelman , Animais , Camundongos , Síndrome de Angelman/genética , Síndrome de Angelman/terapia , RNA Antissenso/genética , Obesidade , Ubiquitina-Proteína Ligases/genética
2.
Nature ; 530(7588): 98-102, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26808898

RESUMO

Methyl-CpG binding protein 2 (MeCP2) has crucial roles in transcriptional regulation and microRNA processing. Mutations in the MECP2 gene are found in 90% of patients with Rett syndrome, a severe developmental disorder with autistic phenotypes. Duplications of MECP2-containing genomic segments cause the MECP2 duplication syndrome, which shares core symptoms with autism spectrum disorders. Although Mecp2-null mice recapitulate most developmental and behavioural defects seen in patients with Rett syndrome, it has been difficult to identify autism-like behaviours in the mouse model of MeCP2 overexpression. Here we report that lentivirus-based transgenic cynomolgus monkeys (Macaca fascicularis) expressing human MeCP2 in the brain exhibit autism-like behaviours and show germline transmission of the transgene. Expression of the MECP2 transgene was confirmed by western blotting and immunostaining of brain tissues of transgenic monkeys. Genomic integration sites of the transgenes were characterized by a deep-sequencing-based method. As compared to wild-type monkeys, MECP2 transgenic monkeys exhibited a higher frequency of repetitive circular locomotion and increased stress responses, as measured by the threat-related anxiety and defensive test. The transgenic monkeys showed less interaction with wild-type monkeys within the same group, and also a reduced interaction time when paired with other transgenic monkeys in social interaction tests. The cognitive functions of the transgenic monkeys were largely normal in the Wisconsin general test apparatus, although some showed signs of stereotypic cognitive behaviours. Notably, we succeeded in generating five F1 offspring of MECP2 transgenic monkeys by intracytoplasmic sperm injection with sperm from one F0 transgenic monkey, showing germline transmission and Mendelian segregation of several MECP2 transgenes in the F1 progeny. Moreover, F1 transgenic monkeys also showed reduced social interactions when tested in pairs, as compared to wild-type monkeys of similar age. Together, these results indicate the feasibility and reliability of using genetically engineered non-human primates to study brain disorders.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Mutação em Linhagem Germinativa/genética , Hereditariedade/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Animais Geneticamente Modificados , Ansiedade/genética , Ansiedade/psicologia , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Encéfalo/metabolismo , Cognição/fisiologia , Feminino , Humanos , Locomoção/genética , Locomoção/fisiologia , Macaca fascicularis , Masculino , Fenótipo , Comportamento Social , Injeções de Esperma Intracitoplásmicas , Transgenes/genética
3.
Proc Natl Acad Sci U S A ; 116(25): 12500-12505, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160454

RESUMO

Deficiency in the E3 ubiquitin ligase UBE3A leads to the neurodevelopmental disorder Angelman syndrome (AS), while additional dosage of UBE3A is linked to autism spectrum disorder. The mechanisms underlying the downstream effects of UBE3A gain or loss of function in these neurodevelopmental disorders are still not well understood, and effective treatments are lacking. Here, using stable-isotope labeling of amino acids in mammals and ubiquitination assays, we identify PTPA, an activator of protein phosphatase 2A (PP2A), as a bona fide ubiquitin ligase substrate of UBE3A. Maternal loss of Ube3a (Ube3am-/p+) increased PTPA level, promoted PP2A holoenzyme assembly, and elevated PP2A activity, while maternal 15q11-13 duplication containing Ube3a down-regulated PTPA level and lowered PP2A activity. Reducing PTPA level in vivo restored the defects in dendritic spine maturation in Ube3am-/p+ mice. Moreover, pharmacological inhibition of PP2A activity with the small molecule LB-100 alleviated both reduction in excitatory synaptic transmission and motor impairment in Ube3am-/p+ mice. Together, our results implicate a critical role of UBE3A-PTPA-PP2A signaling in the pathogenesis of UBE3A-related disorders and suggest that PP2A-based drugs could be potential therapeutic candidates for treatment of UBE3A-related disorders.


Assuntos
Espinhas Dendríticas/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteína Fosfatase 2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Encéfalo/enzimologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Camundongos , Camundongos Transgênicos , Proteína Fosfatase 2/antagonistas & inibidores , Proteólise , Transmissão Sináptica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Acta Neuropathol ; 142(6): 1045-1064, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536123

RESUMO

Since the discovery of ketamine anti-depressant effects in last decade, it has effectively revitalized interest in investigating excitatory synapses hypothesis in the pathogenesis of depression. In the present study, we aimed to reveal the excitatory synaptic regulation of corticotropin-releasing hormone (CRH) neuron in the hypothalamus, which is the driving force in hypothalamic-pituitary-adrenal (HPA) axis regulation. This study constitutes the first observation of an increased density of PSD-93-CRH co-localized neurons in the hypothalamic paraventricular nucleus (PVN) of patients with major depression. PSD-93 overexpression in CRH neurons in the PVN induced depression-like behaviors in mice, accompanied by increased serum corticosterone level. PSD-93 knockdown relieved the depression-like phenotypes in a lipopolysaccharide (LPS)-induced depression model. Electrophysiological data showed that PSD-93 overexpression increased CRH neurons synaptic activity, while PSD-93 knockdown decreased CRH neurons synaptic activity. Furthermore, we found that LPS induced increased the release of glutamate from microglia to CRH neurons resulted in depression-like behaviors using fiber photometry recordings. Together, these results show that PSD-93 is involved in the pathogenesis of depression via increasing the synaptic activity of CRH neurons in the PVN, leading to the hyperactivity of the HPA axis that underlies depression-like behaviors.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Depressão/metabolismo , Guanilato Quinases/metabolismo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Transmissão Sináptica/fisiologia , Regulação para Cima
5.
Epilepsia ; 62(2): 517-528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400301

RESUMO

OBJECTIVE: Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures. As disrupted neuronal excitation/inhibition balance is closely associated with the activity of glutamatergic and γ-aminobutyric acidergic (GABAergic) neurons, our aim was to study the effect of the loss of CDKL5 in different types of neurons on epilepsy. METHODS: Using the Cre-LoxP system, we generated conditional knockout (cKO) mouse lines allowing CDKL5 deficiency in glutamatergic or GABAergic neurons. We employed noninvasive video recording and in vivo electrophysiological approaches to study seizure activity in these Cdkl5 cKO mice. Furthermore, we conducted Timm staining to confirm a morphological alteration, mossy fiber sprouting, which occurs with limbic epilepsy in both human and mouse brains. Finally, we performed whole-cell patch clamp in dentate granule cells to investigate cell-intrinsic properties and synaptic excitatory activity. RESULTS: We demonstrate that Emx1- or CamK2α-derived Cdkl5 cKO mice manifest high-frequency spontaneous seizure activities recapitulating the epilepsy of CDD patients, which ultimately led to sudden death in mice. However, Cdkl5 deficiency in GABAergic neurons does not generate such seizures. The seizures were accompanied by typical epileptic features including higher amplitude spikes for epileptiform discharges and abnormal hippocampal mossy fiber sprouting. We also found an increase in spontaneous and miniature excitatory postsynaptic current frequencies but no change in amplitudes in the dentate granule cells of Emx1-cKO mice, indicating enhanced excitatory synaptic activity. SIGNIFICANCE: Our study demonstrates that Cdkl5 cKO mice, serving as an animal model to study recurrent spontaneous seizures, have potential value for the pathological study of CDD-related seizures and for therapeutic innovation.


Assuntos
Síndromes Epilépticas/genética , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Espasmos Infantis/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Giro Denteado/citologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/patologia , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Fibras Musgosas Hipocampais/patologia , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Patch-Clamp , Prosencéfalo , Convulsões/metabolismo , Convulsões/fisiopatologia , Espasmos Infantis/metabolismo , Espasmos Infantis/fisiopatologia , Fatores de Transcrição
6.
J Inherit Metab Dis ; 44(2): 450-468, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33438237

RESUMO

Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common form of lipid storage myopathy. The disease is mainly caused by mutations in electron-transfer flavoprotein dehydrogenase gene (ETFDH), which leads to decreased levels of ETF:QO in skeletal muscle. However, the specific underlying mechanisms triggering such degradation remain unknown. We constructed expression plasmids containing wild type ETF:QO and mutants ETF:QO-A84T, R175H, A215T, Y333C, and cultured patient-derived fibroblasts containing the following mutations in ETFDH: c.250G>A (p.A84T), c.998A>G (p.Y333C), c.770A>G (p.Y257C), c.1254_1257delAACT (p. L418TfsX10), c.524G>A (p.R175H), c.380T>A (p.L127P), and c.892C>T (p.P298S). We used in vitro expression systems and patient-derived fibroblasts to detect stability of ETF:QO mutants then evaluated their interaction with Hsp70 interacting protein CHIP with active/inactive ubiquitin E3 ligase carboxyl terminus using western blot and immunofluorescence staining. This interaction was confirmed in vitro and in vivo by co-immunoprecipitation and immunofluorescence staining. We confirmed the existence two ubiquitination sites in mutant ETF:QO using mass spectrometry (MS) analysis. We found that mutant ETF:QO proteins were unstable and easily degraded in patient fibroblasts and in vitro expression systems by ubiquitin-proteasome pathway, and identified the specific ubiquitin E3 ligase as CHIP, which forms complex to control mutant ETF:QO degradation through poly-ubiquitination. CHIP-dependent degradation of mutant ETF:QO proteins was confirmed by MS and site-directed mutagenesis of ubiquitination sites. Hsp70 is directly involved in this process as molecular chaperone of CHIP. CHIP plays an important role in ubiquitin-proteasome pathway dependent degradation of mutant ETF:QO by working as a chaperone-assisted E3 ligase, which reveals CHIP's potential role in pathological mechanisms of late-onset MADD.


Assuntos
Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Criança , Flavoproteínas Transferidoras de Elétrons/genética , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Masculino , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Riboflavina/metabolismo , Ubiquinona/metabolismo , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
7.
Brain ; 142(8): 2238-2252, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31203368

RESUMO

Hereditary spastic paraplegias refer to a heterogeneous group of neurodegenerative disorders resulting from degeneration of the corticospinal tract. Clinical characterization of patients with hereditary spastic paraplegias represents progressive spasticity, exaggerated reflexes and muscular weakness. Here, to expand on the increasingly broad pools of previously unknown hereditary spastic paraplegia causative genes and subtypes, we performed whole exome sequencing for six affected and two unaffected individuals from two unrelated Chinese families with an autosomal dominant hereditary spastic paraplegia and lacking mutations in known hereditary spastic paraplegia implicated genes. The exome sequencing revealed two stop-gain mutations, c.247_248insGTGAATTC (p.I83Sfs*11) and c.526G>T (p.E176*), in the ubiquitin-associated protein 1 (UBAP1) gene, which co-segregated with the spastic paraplegia. We also identified two UBAP1 frameshift mutations, c.324_325delCA (p.H108Qfs*10) and c.425_426delAG (p.K143Sfs*15), in two unrelated families from an additional 38 Chinese pedigrees with autosomal dominant hereditary spastic paraplegias and lacking mutations in known causative genes. The primary disease presentation was a pure lower limb predominant spastic paraplegia. In vivo downregulation of Ubap1 in zebrafish causes abnormal organismal morphology, inhibited motor neuron outgrowth, decreased mobility, and shorter lifespan. UBAP1 is incorporated into endosomal sorting complexes required for transport complex I and binds ubiquitin to function in endosome sorting. Patient-derived truncated form(s) of UBAP1 cause aberrant endosome clustering, pronounced endosome enlargement, and cytoplasmic accumulation of ubiquitinated proteins in HeLa cells and wild-type mouse cortical neuron cultures. Biochemical and immunocytochemical experiments in cultured cortical neurons derived from transgenic Ubap1flox mice confirmed that disruption of UBAP1 leads to dysregulation of both early endosome processing and ubiquitinated protein sorting. Strikingly, deletion of Ubap1 promotes neurodegeneration, potentially mediated by apoptosis. Our study provides genetic and biochemical evidence that mutations in UBAP1 can cause pure autosomal dominant spastic paraplegia.


Assuntos
Proteínas de Transporte/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Animais , Povo Asiático/genética , Criança , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Linhagem , Peixe-Zebra
8.
Neurobiol Dis ; 132: 104585, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445164

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by maternal mutation and paternal imprinting of the gene encoding UBE3A, an E3 ubiquitin ligase. Although several potential target proteins of UBE3A have been reported, how these proteins regulate neuronal development remains unclear. We performed a large-scale quantitative proteomic analysis using stable-isotope labeling of amino acids in mammals (SILAM) in mice with maternal Ube3a mutation. We identified huntingtin (Htt)-associated protein (HAP1), a protein that is involved in Huntington's disease (HD), as a new target of UBE3A. We demonstrate that HAP1 regulates autophagy at the initiation stage by promoting PtdIns3K complex formation and enhancing its activity. HAP1 also co-localized with MAP1LC3 (LC3) and other proteins involved in autophagosome expansion. As a result, HAP1 increased autophagy flux. Strikingly, knocking down of HAP1 alleviated aberrant autophagy in primary neurons from AS mice. Concordantly, treatment of AS neurons with an autophagy inhibitor alleviated the reduction in density of dendritic spines. Furthermore, autophagy inhibition in AS mice partially alleviated a social interaction deficit as shown in open field test. Thus, our results identify HAP1 as an in vivo UBE3A target that contributes to deregulated autophagy and synaptic dysfunction in the central nervous system of AS mouse.


Assuntos
Síndrome de Angelman/genética , Autofagia/fisiologia , Encéfalo/patologia , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Ubiquitina-Proteína Ligases/genética
9.
PLoS Genet ; 12(5): e1006062, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27232889

RESUMO

Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders.


Assuntos
Síndrome de Angelman/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Superfície Celular/biossíntese , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/patologia , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Modelos Animais de Doenças , Drosophila/genética , Endocitose/genética , Regulação da Expressão Gênica/genética , Humanos , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Neurônios/patologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Sinapses/genética , Ubiquitina-Proteína Ligases/biossíntese
10.
Cereb Cortex ; 27(2): 919-932, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158408

RESUMO

Proper neuronal migration is orchestrated by combined membrane signal paradigms, whereas the role and mechanism of regulated intramembrane proteolysis (RIP) remain to be illustrated. We show here that the disintegrin and metalloprotease-domain containing protein 10 (ADAM10) regulates cortical neurons migration by initiating the RIP of Notch. We found that Notch intracellular domain (NICD) significantly rescued the migration defect of ADAM10-deficient neurons. Moreover, ADAM10 deficiency led to reduced neuronal motility and disrupted microtubule (MT) structure, which were associated with downregulated expression of acetylated tubulin and MT-associated proteins. Specifically, the NICD/RBPJ complex bound directly to the promoter, and regulated the neuronal expression level of doublecortin (DCX), a modulator of the MT cytoskeleton. Functionally, DCX overexpression largely restored neuron motility and reversed migration defect caused by ADAM10 knockout. Taken together, these findings demonstrate the direct requirement of ADAM10 in cortical radial migration and reveal the underlying mechanism by linking ADAM10-initiated RIP of Notch to the regulation of MT cytoskeleton through transcriptional control of Dcx expression.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Neurônios/fisiologia , Receptores Notch/metabolismo , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Domínios Proteicos , Proteólise
11.
Mol Cell Biochem ; 432(1-2): 55-65, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28337703

RESUMO

Malignant glioma is the most common and aggressive form of brain tumor with poor prognosis of survival. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent but is insufficient of inducing apoptosis in some types of gliomas. In this study, we showed that the small-molecule Mcl-1 inhibitor UMI-77 sensitized glioma cells to TRAIL treatment, as evidenced by cell viability assay, Annexin V staining and JC-1 staining. Combination of UMI-77 and TRAIL in glioma cells led to the activation of caspase-8 and Bid, cleavage of caspase-3 and poly-ADP ribose polymerase (PARP), accumulation of tBid in the mitochondria and release of cytochrome c into the cytosol. UMI-77 alone or in combination with TRAIL untethered pro-apoptotic Bcl-2 proteins Bim and Bak from the sequestration of Mcl-1 and promoted the conformational activation of Bak. Small hairpin RNA (shRNA) of Bid attenuated the cleavage of caspase-8, Bid, caspase-3 and PARP, and reduced the cytotoxicity of UMI-77 plus TRAIL as compared with control shRNA cells, indicating this synergy entails the crosstalk between extrinsic and intrinsic apoptotic signaling. Taken together, UMI-77 enhances TRAIL-induced apoptosis by unsequestering Bim and Bak, which provides a novel therapeutic strategy for the treatment of gliomas.


Assuntos
Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Glioma/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sulfonamidas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tioglicolatos/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Células HeLa , Humanos
12.
J Neurosci ; 35(2): 610-20, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589755

RESUMO

Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Células-Tronco Neurais/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Filaminas/genética , Filaminas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neurais/fisiologia , Heterotopia Nodular Periventricular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Hippocampus ; 26(7): 848-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26766634

RESUMO

Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation. Peptides which specifically block the interaction between N-Ethylmaleimide-Sensitive Factor (NSF) and the AMPAR-subunit GluA2 prevented the increase in synaptic transmission and surface expression of AMPARs known to occur after corticosterone application to hippocampal neurons. Combining a live imaging Fluorescence Recovery After Photobleaching (FRAP) approach with the use of the pH-sensitive GFP-AMPAR tagging revealed that this NSF/GluA2 interaction was also essential for the increase of the mobile fraction and reduction of the diffusion of AMPARs after treating hippocampal neurons with corticosterone. We conclude that the interaction between NSF and GluA2 contributes to the effects of corticosterone on AMPAR function. © 2016 Wiley Periodicals, Inc.


Assuntos
Glucocorticoides/metabolismo , Hipocampo/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Corticosterona/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Microscopia de Fluorescência , Ratos Wistar , Transmissão Sináptica/fisiologia
14.
Proc Natl Acad Sci U S A ; 110(22): 9118-23, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671101

RESUMO

The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5-PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5-PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Eletroforese em Gel de Poliacrilamida , Imunoprecipitação , Lipoilação , Mutação/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley
15.
Learn Mem ; 22(12): 577-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26572647

RESUMO

Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptors (AMPARs), which are crucial for synaptic plasticity and memory formation. Combining a live imaging fluorescent recovery after photobleaching approach with the use of the pH-sensitive GFP-AMPAR tagging revealed that corticosterone enhances the AMPAR mobile fraction and increases synaptic trapping of AMPARs in hippocampal cells. In parallel, corticosterone-enhanced AMPAR-mediated synaptic transmission. Blocking the mammalian target of rapamycin (mTOR) pathway prevented the effects of corticosterone on both AMPAR trapping-but not on the mobile fraction-and synaptic transmission. Blocking the mTOR pathway also prevented the memory enhancing effects of corticosterone in a contextual fear-conditioning paradigm. We conclude that activation of the mTOR pathway is essential for the effects of corticosterone on synaptic trapping of AMPARs and, possibly as a consequence, fearful memory formation.


Assuntos
Corticosterona/metabolismo , Medo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Receptores de AMPA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Corticosterona/administração & dosagem , Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
16.
J Neurosci ; 33(1): 327-33, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23283345

RESUMO

Pyramidal neurons have a highly polarized dendritic morphology, characterized by one long apical dendrite and multiple short basal dendrites. They function as the primary excitatory cells of the mammalian prefrontal cortex and the corticospinal tract. However, the molecular mechanisms underlying the development of polarized dendrite morphology in pyramidal neurons remain poorly understood. Here, we report that the Angelman syndrome (AS) protein ubiquitin-protein ligase E3A (Ube3a) plays an important role in specifying the polarization of pyramidal neuron dendritic arbors in mice. shRNA-mediated downregulation of Ube3a selectively inhibited apical dendrite outgrowth and resulted in impaired dendrite polarity, which could be rescued by coexpressing mouse Ube3a isoform 2, but not isoform 1 or 3. Ube3a knockdown also disrupted the polarized distribution of the Golgi apparatus, a well established cellular mechanism for asymmetric dendritic growth in pyramidal neurons. Furthermore, downregulation of Ube3a completely blocked Reelin-induced rapid deployment of Golgi into dendrite. Consistently, we also observed selective inhibition of apical dendrite outgrowth in pyramidal neurons in a mouse model of AS. Overall, these results show that Ube3a is required for the specification of the apical dendrites and dendrite polarization in pyramidal neurons, and suggest a novel pathological mechanism for AS.


Assuntos
Polaridade Celular/fisiologia , Dendritos/metabolismo , Células Piramidais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Camundongos , Neurogênese/fisiologia , Células Piramidais/citologia , RNA Interferente Pequeno , Proteína Reelina , Ubiquitina-Proteína Ligases/genética
17.
Brain Stimul ; 16(3): 918-926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245844

RESUMO

BACKGROUND: Low-intensity ultrasound is a noninvasive neuromodulation technique with the potential to focally manipulate deep brain activity at millimeter-scale resolution. However, there have been controversies over the direct influence of ultrasound on neurons, due to an indirect auditory activation. Besides, the capacity of ultrasound to stimulate the cerebellum remains underestimated. OBJECTIVE: To validate the direct neuromodulation effects of ultrasound on the cerebellar cortex from both cellular and behavioral levels. METHODS: Two-photon calcium imaging were used to measure the neuronal responses of cerebellar granule cells (GrCs) and Purkinje cells (PCs) to ultrasound application in awake mice. And a mouse model of paroxysmal kinesigenic dyskinesia (PKD), in which direct activation of the cerebellar cortex leads to dyskinetic movements, was used to assess the ultrasound-induced behavioral responses. RESULTS: Low-intensity ultrasound stimulus (0.1 W/cm2) evoked rapidly increased and sustained neural activity in GrCs and PCs at targeted region, while no significant changes in calcium signals were observed responding to off-target stimulus. The efficacy of ultrasonic neuromodulation relies on acoustic dose modified by ultrasonic duration and intensity. In addition, transcranial ultrasound reliably triggered dyskinesia attacks in proline-rich transmembrane protein 2 (Prrt2) mutant mice, suggesting that the intact cerebellar cortex were activated by ultrasound. CONCLUSION: Low-intensity ultrasound directly activates the cerebellar cortex in a dose-dependent manner, and thus serves as a promising tool for cerebellar manipulation.


Assuntos
Cálcio , Cerebelo , Camundongos , Animais , Cerebelo/diagnóstico por imagem , Encéfalo , Neurônios , Células de Purkinje
18.
Neurosci Bull ; 39(4): 659-674, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36469195

RESUMO

Primary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.


Assuntos
Encefalopatias , Animais , Encefalopatias/genética , Encefalopatias/terapia , Receptor do Retrovírus Politrópico e Xenotrópico , Encéfalo/patologia
19.
Cell Rep ; 42(10): 113202, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777961

RESUMO

CDKL5 deficiency disorder (CDD) is a severe epileptic encephalopathy resulting from pathological mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. Despite significant progress in understanding the neuronal function of CDKL5, the molecular mechanisms underlying CDD-associated epileptogenesis are unknown. Here, we report that acute ablation of CDKL5 from adult forebrain glutamatergic neurons leads to elevated neural network activity in the dentate gyrus and the occurrence of early-onset spontaneous seizures via tropomyosin-related kinase B (TrkB) signaling. We observe increased expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of its receptor TrkB in the hippocampus of Cdkl5-deficient mice prior to the onset of behavioral seizures. Moreover, reducing TrkB signaling in these mice rescues the altered synaptic activity and suppresses recurrent seizures. These results suggest that TrkB signaling mediates epileptogenesis in a mouse model of CDD and that targeting this pathway might be effective for treating epilepsy in patients affected by CDKL5 mutations.


Assuntos
Síndromes Epilépticas , Espasmos Infantis , Humanos , Adulto , Animais , Camundongos , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Convulsões/metabolismo , Neurônios/metabolismo , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Gen Psychiatr ; 36(5): e101127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920406

RESUMO

Background: Brain-derived neurotrophic factor (BDNF) is known to prevent methamphetamine (METH)-induced neurotoxicity and plays a role in various stages of METH addiction. However, there is a lack of research with longitudinal design on changes in plasma BDNF levels in active METH-dependent individuals. Aims: The aim of the study was to investigate changes in BDNF levels during METH self-administration in monkeys. Methods: This study measured plasma BDNF levels in three male rhesus monkeys with continuous METH exposure and four male control rhesus monkeys without METH exposure. Changes in plasma BDNF levels were then assessed longitudinally during 40 sessions of METH self-administration in the three monkeys. Results: Repeated METH exposure decreased plasma BDNF levels. Additionally, plasma BDNF decreased with long-term rather than short-term accumulation of METH during METH self-administration. Conclusions: These findings may indicate that the changes in peripheral BDNF may reflect the quantity of accumulative METH intake during a frequent drug use period.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa