Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(46): e202412651, 2024 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-39030810

RESUMO

Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro- and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors with different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions. A U-shaped di-Pt(II) complex has been assembled into highly polarized yellow-phosphorescent crystalline microrods (Y-rod) by strong intermolecular Pt⋅⋅⋅Pt interaction. Upon end-initiated desorption of the incorporated CH2Cl2 solvents, the Y-rod is transformed in a domino fashion into tri-block polarized photonic heterojunctions (PPHs) with alternate red-yellow-red emissions or red-phosphorescent microrods (R-rods). The red emissions of these structures are also highly polarized; however, their polarization directions are just orthogonal to those of the yellow phosphorescence of the Y-rod. With the aid of a patterned mask, the R-rod can be further programmed into multi-block PPHs with precisely controlled block sizes by side-allowed adsorption of CH2Cl2 vapor. X-ray diffraction analysis and theoretical calculations suggest that the solvent-regulated modulation of the crystal packing and excited-state property is critical for the construction of these PPHs.

2.
Angew Chem Int Ed Engl ; 61(11): e202116603, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35020259

RESUMO

Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions. Anisotropic tri-directional waveguiding is further implemented on a single hexagonal microcrystal. These results demonstrate the great capability of the organoplatinum(II) cruciform as a general platform to fabricate 2D phosphorescent micro-/nanocrystals for advanced photonic applications.

3.
Angew Chem Int Ed Engl ; 61(33): e202205033, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35604407

RESUMO

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence. It is found that the polarization direction and degree of the luminescence out-coupled through different waveguiding channels can either be essentially retained or distinctly changed with respect to those of the original luminescence, depending on the molecular arrangement and the orientation of transition dipole moments of the crystal. This work demonstrates the promising potential of 2D emissive microcrystals in multi-channel polarized photon transport.

4.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295313

RESUMO

Crystalline materials with appealing luminescent properties are attractive materials for various optoelectronic applications. The in situ bicomponent reaction of 1,2-ethylenedisulfonic acid with 1,4-di(pyrid-2-yl)benzene, 1,4-di(pyrid-3-yl)benzene, or 1,4-di(pyrid-4-yl)benzene affords luminescent crystals with hydrogen-bonded polymeric structures. Variations in the positions of the pyridine nitrogen atoms lead to alternating polymeric structures with either a ladder- or zigzag-type of molecular arrangement. By using a nanoprecipitation method, microcrystals of these polymeric structures are prepared, showing polarized luminescence with a moderate degree of polarization.

5.
Adv Mater ; 33(37): e2104418, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337797

RESUMO

3D laser displays play an important role in next-generation display technologies owing to the ultimate visual experience they provide. Circularly polarized (CP) laser emissions, featuring optical rotatory power and invariability under rotations, are attractive for 3D displays due to potential in enhancing contrast ratio and comfortability. However, the lack of pixelated self-emissive CP microlaser arrays as display panels hinders the implementation of 3D laser displays. Here, full-color 3D laser displays are demonstrated based on CP lasing with inkjet-printed cholesteric liquid crystal (CLC) arrays as display panels. Individual CP lasers are realized by embedding fluorescent dyes into CLCs with their left-/right-handed helical superstructures serving as distributed feedback microcavities, bringing in ultrahigh circular polarization degree values (gem  = 1.6). These CP microlaser pixels exhibit excellent far-field color-rendering features and a relatively large color gamut for high-fidelity displays. With these printed CLC red-green-blue (RGB) microlaser arrays serving as display panels, proof-of-concept full-color 3D laser displays are demonstrated via delivering images with orthogonal CP laser emissions into one's left and right eyes. These results provide valuable enlightenment for the development of 3D laser displays.

6.
Nat Commun ; 12(1): 3265, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075038

RESUMO

Exciton-polariton Bose-Einstein condensation (EP BEC) is of crucial importance for the development of coherent light sources and optical logic elements, as it creates a new state of matter with coherent nature and nonlinear behaviors. The demand for room temperature EP BEC has driven the development of organic polaritons because of the large binding energies of Frenkel excitons in organic materials. However, the reliance on external high-finesse microcavities for organic EP BEC results in poor compactness and integrability of devices, which restricts their practical applications in on-chip integration. Here, we demonstrate room temperature EP BEC in organic single-crystal microribbon natural cavities. The regularly shaped microribbons serve as waveguide Fabry-Pérot microcavities, in which efficient strong coupling between Frenkel excitons and photons leads to the generation of EPs at room temperature. The large exciton-photon coupling strength due to high exciton densities facilitates the achievement of EP BEC. Taking advantages of interactions in EP condensates and dimension confinement effects, we demonstrate the realization of controllable output of coherent light from the microribbons. We hope that the results will provide a useful enlightenment for using organic single crystals to construct miniaturized polaritonic devices.

7.
Research (Wash D C) ; 2020: 6539431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33623907

RESUMO

Information encryption and decryption have attracted particular attention; however, the applications are frequently restricted by limited coding capacity due to the indistinguishable broad photoluminescence band of conventional stimuli-responsive fluorescent materials. Here, we present a concept of confidential information encryption with photoresponsive liquid crystal (LC) lasing materials, which were used to fabricate ordered microlaser arrays through a microtemplate-assisted inkjet printing method. LC microlasers exhibit narrow-bandwidth single-mode emissions, and the wavelength of LC microlasers was reversibly modulated based on the optical isomerization of the chiral dopant in LCs. On this basis, we demonstrate phototunable information authentication on LC microlaser arrays using the wavelength of LC microlasers as primary codes. These results provide enlightenment for the implementation of microlaser-based cryptographic primitives for information encryption and anticounterfeiting applications.

8.
Adv Mater ; 32(29): e2001999, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510677

RESUMO

Halide perovskites have shown tremendous potential for next-generation flat-panel laser displays due to their remarkable optoelectronic properties and outstanding material processability; however, the lack of a general approach for the fast growth of perovskite laser arrays capable of electrical operations impedes actualization of their display applications. Herein, a universal and robust wettability-guided screen-printing technique is reported for the rapid growth of large-scale multicolor perovskite microdisk laser arrays, which can serve as laser display panels and further be used to realize current-driven displays. The perovskite microlasers are precisely defined with controlled physical dimensions and spatial locations by such a printing strategy, and each perovskite microlaser serves as a pixel of a display panel. Moreover, the screen-printing procedure is highly compatible with light-emitting diode (LED) device architectures, which is favorable for the mass production of micro-LED arrays. On this basis, a prototype of a current-driven display is demonstrated with desired functionalities. The outstanding performance and feasible fabrication of screen-printed perovskite microlaser arrays embedded in LEDs provide deep insights into the concepts and device architectures of electrically driven laser display technology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa