Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686449

RESUMO

Oral cavity is an essential reservoir for H. pylori. We aimed to investigate the antibacterial effects of dimethylaminododecyl methacrylate (DMADDM) against H. pylori. Modified giomers were prepared by introducing 0%, 1.25% and 2.5% DMADDM monomers. Broth microdilution assay, spot assay, Alamer Blue assay, PMA-qPCR, crystal violet staining, scanning electron microscopy observation and live/dead bacterial staining were performed to evaluate the antibacterial and antibiofilm effects of DMADDM and modified giomers in vitro. Urease assay, qPCR, hematoxylin-eosin staining and ELISA were performed to evaluate the inflammation levels and colonization of H. pylori in vivo. In vitro experiments indicated that the minimum inhibitory concentration and minimum bactericidal concentration of DMADDM were 6.25 µg/mL and 25 µg/mL, respectively. It inhibited H. pylori in a dose- and time-dependent manner, and significantly reduced the expression of cagA, vacA, flaA and ureB. DMADDM-modified giomers inhibited the formation of H. pylori biofilm and reduced live cells within it. In vivo experiments confirmed that the pretreatment with DMADDM-modified dental resin effectively reduced the gastric colonization of oral-derived H. pylori, suppressed systemic and local gastric inflammation. DMADDM monomers and DMADDM-modified giomers possessed excellent antibacterial and antibiofilm effects on H. pylori. Pretreatment with DMADDM-modified giomers significantly inhibited the gastric infection by H. pylori.


Assuntos
Helicobacter pylori , Humanos , Antibacterianos/farmacologia , Inflamação , Materiais Dentários
2.
Clin Oral Investig ; 26(2): 1517-1530, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34392408

RESUMO

OBJECTIVES: A previous study showed that the combination of poly(amido amine) (PAMAM) and rechargeable composites with nanoparticles of amorphous calcium phosphate (NACP) induced dentin remineralization in an acidic solution with no initial calcium (Ca) and phosphate (P) ions, mimicking the oral condition of individuals with dry mouths. However, the frequent fluid challenge in the oral cavity may decrease the remineralization capacity. Therefore, the objective of the present study was to investigate the remineralization efficacy on dentin in an acid solution via PAMAM + NACP after fluid challenges for the first time. METHODS: The NACP nanocomposite was stored in a pH 4 solution for 77 days to exhaust its Ca and P ions and then recharged. Demineralized dentin samples were divided into four groups: (1) control dentin, (2) dentin coated with PAMAM, (3) dentin with recharged NACP composite, and (4) dentin with PAMAM + recharged NACP. PAMAM-coated dentin was shaken in phosphate-buffered saline for 77 days to desorb PAMAM from dentin. Samples were treated in pH 4 lactic acid with no initial Ca and P ions for 42 days. RESULTS: After 77 days of fluid challenge, PAMAM failed to prevent dentin demineralization in lactic acid. The recharged NACP nanocomposite raised the pH to above 6.5 and re-released more than 6.0 and 4.0 mmol/L Ca and P ions daily, respectively, which inhibited further demineralization. In contrast, the PAMAM + NACP combined method induced great dentin remineralization and restored the dentin microhardness to 0.54 ± 0.04 GPa, which approached that of sound dentin (P = 0.426, P > 0.05). CONCLUSIONS: The PAMAM + NACP combination achieved dentin remineralization in an acid solution with no initial Ca and P ions, even after severe fluid challenges. CLINICAL RELEVANCE: The novel PAMAM + NACP has a strong and sustained remineralization capability to inhibit secondary caries, even for individuals with dry mouths.


Assuntos
Nanocompostos , Remineralização Dentária , Aminas , Antibacterianos , Biofilmes , Fosfatos de Cálcio , Dentina , Humanos , Íons
3.
Clin Oral Investig ; 26(4): 3637-3650, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066688

RESUMO

OBJECTIVE: The bonding interface of dental filling therapy is the weak point in resisting secondary caries. Adhesives containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) have been demonstrated in vitro to prevent bacteria from producing acid and to promote tooth remineralization. The present study aimed to evaluate the efficacy of adhesive with NACP and DMAHDM to prevent secondary caries in vivo. MATERIALS AND METHODS: Artificial cavities were created on the first molar on both sides of the maxillary in a rat model. One side was treated with adhesive containing NACP + DMAHDM, while on the other side, a commercial adhesive served as control. After 24 days of cariogenic feeding, the degree of secondary caries was evaluated by micro-CT and a modified Keyes scoring method. Quantitative real-time PCR (qPCR) and colony-forming unit (CFU) counts were used to evaluate the antibacterial efficacy of the materials. Biocompatibility was also investigated. RESULTS: In the rat model, the adhesive with NACP + DMAHDM showed excellent biocompatibility and effectively decreased the amount of bacteria. The experimental group demonstrated excellent remineralization effectiveness, with a lower modified Keyes score and mineral loss of 34.16 ± 2.13 vol% µm, compared with 77.44 ± 7.22 vol% µm in the control group, according to micro-CT (P < 0.05), showing excellent capacity to inhibit secondary caries. CONCLUSIONS: The NACP-DMAHDM-containing adhesive exhibited good performance in preventing secondary caries in vivo. CLINICAL RELEVANCE: Adhesives containing NACP and DMAHDM have great potential for use in clinical dentistry to prevent secondary caries by inhibiting bacterial growth and promoting remineralization.


Assuntos
Biofilmes , Suscetibilidade à Cárie Dentária , Animais , Antibacterianos/farmacologia , Fosfatos de Cálcio/farmacologia , Cimentos Dentários/farmacologia , Metacrilatos/farmacologia , Metilaminas , Ratos , Remineralização Dentária/métodos
4.
Clin Oral Investig ; 26(1): 313-323, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34110495

RESUMO

OBJECTIVES: This study aimed to develop an antibacterial and calcium (Ca) and phosphate (P) rechargeable adhesive and investigate the effects of dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on dentin bonding, biofilm response, and repeated Ca and P ion recharge and re-release capability for the first time. MATERIALS AND METHODS: Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol A glycidyl dimethacrylate (BisGMA) formed the adhesive (PEHB). Three groups were tested: (1) Scotchbond (SBMP, 3 M) control, (2) PEHB + 30% NACP, and (3) PEHB + 30% NACP + 5% DMAHDM. Specimens were tested for dentin shear bond strength, and Ca and P ion release, recharge, and re-release. Biofilm lactic acid production and colony-forming units (CFU) on resins were analyzed. RESULTS: The four groups had similar dentin shear bond strengths (p > 0.1). Adhesive with DMAHDM showed significant decrease in metabolic activity, lactic acid production, and biofilm CFU (p < 0.05). The adhesives containing NACP released high levels of Ca and P ions initially and after being recharged. CONCLUSION: This study developed the first Ca and P ion-rechargeable and antibacterial adhesive, achieving strong antibacterial activity and Ca and P ion recharge and re-release for long-term remineralization. CLINICAL RELEVANCE: Considering the restoration-tooth bonded interface being the weak link and recurrent caries at the margins being the primary reason for restoration failures, this novel calcium phosphate-rechargeable and antibacterial adhesive is promising for a wide range of tooth-restoration applications to inhibit caries.


Assuntos
Cárie Dentária , Cimentos Dentários , Antibacterianos/farmacologia , Biofilmes , Fosfatos de Cálcio/farmacologia , Cárie Dentária/tratamento farmacológico , Cárie Dentária/prevenção & controle , Humanos , Metacrilatos/farmacologia
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361925

RESUMO

Persistent apical periodontitis is a critical challenge for endodontists. Developing root canal filling materials with continuous antibacterial effects and tightly sealed root canals are essential strategies to avoid the failure of root canal therapy and prevent persistent apical periodontitis. We modified the EndoREZ root canal sealer with the antibacterial material dimethylaminododecyl methacrylate (DMADDM) and magnetic nanoparticles (MNPs). The mechanical properties of the modified root canal sealer were tested. The biocompatibility of this sealer was verified in vitro and in vivo. Multispecies biofilms were constructed to assess the antibacterial effects of the modified root canal sealer. We applied magnetic fields and examined the extent of root canal sealer penetration in vitro and in vivo. The results showed that EndoREZ sealer containing 2.5% DMADDM and 1% MNP had biological safety and apical sealing ability. In addition, the modified sealer could increase the sealer penetration range and exert significant antibacterial effects on multispecies biofilms under an external magnetic field. According to the in vivo study, the apices of the root canals with the sealer containing 2.5% DMADDM and 1% MNP showed no significant resorption and exhibited only a slight increase in the periodontal ligament space, with a good inhibitory effect on persistent apical periodontitis.


Assuntos
Nanopartículas de Magnetita , Periodontite Periapical , Materiais Restauradores do Canal Radicular , Humanos , Cavidade Pulpar , Nanopartículas de Magnetita/uso terapêutico , Materiais Restauradores do Canal Radicular/farmacologia , Periodontite Periapical/prevenção & controle , Antibacterianos/farmacologia
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555544

RESUMO

Bone tissue engineering is a promising approach that uses seed-cell-scaffold drug delivery systems to reconstruct bone defects caused by trauma, tumors, or other diseases (e.g., periodontitis). Metformin, a widely used medication for type II diabetes, has the ability to enhance osteogenesis and angiogenesis by promoting cell migration and differentiation. Metformin promotes osteogenic differentiation, mineralization, and bone defect regeneration via activation of the AMP-activated kinase (AMPK) signaling pathway. Bone tissue engineering depends highly on vascular networks for adequate oxygen and nutrition supply. Metformin also enhances vascular differentiation via the AMPK/mechanistic target of the rapamycin kinase (mTOR)/NLR family pyrin domain containing the 3 (NLRP3) inflammasome signaling axis. This is the first review article on the effects of metformin on stem cells and bone tissue engineering. In this paper, we review the cutting-edge research on the effects of metformin on bone tissue engineering. This includes metformin delivery via tissue engineering scaffolds, metformin-induced enhancement of various types of stem cells, and metformin-induced promotion of osteogenesis, angiogenesis, and its regulatory pathways. In addition, the dental, craniofacial, and orthopedic applications of metformin in bone repair and regeneration are also discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Metformina/farmacologia , Metformina/uso terapêutico , Osteogênese , Proteínas Quinases Ativadas por AMP , Alicerces Teciduais , Diferenciação Celular , Regeneração Óssea
7.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142516

RESUMO

The objectives of this study were to investigate the effects of a novel method using flavonoids to inhibit Streptococcus mutans (S. mutans), Candida albicans (C. albicans) and dual-species biofilms and to protect enamel hardness in a biofilm-based caries model for the first time. Several flavonoids, including baicalein, naringenin and catechin, were tested. Gold-standard chlorhexidine (CHX) and untreated (UC) groups served as controls. Optimal concentrations were determined by cytotoxicity assay. Biofilm MTT, colony-forming-units (CFUs), biofilm biomass, lactic acid and polysaccharide production were evaluated. Real-time-polymerase-chain reaction (qRT-PCR) was used to determine gene expressions in biofilms. Demineralization of human enamel was induced via S. mutans-C. albicans biofilms, and enamel hardness was measured. Compared to CHX and UC groups, the baicalein group achieved the greatest reduction in S. mutans, C. albicans and S. mutans-C. albicans biofilms, yielding the least metabolic activity, polysaccharide synthesis and lactic acid production (p < 0.05). The biofilm CFU was decreased in baicalein group by 5 logs, 4 logs, 5 logs, for S. mutans, C. albicans and S. mutans-C. albicans biofilms, respectively, compared to UC group. When tested in a S. mutans-C. albicans in vitro caries model, the baicalein group substantially reduced enamel demineralization under biofilms, yielding an enamel hardness that was 2.75 times greater than that of UC group. Hence, the novel baicalein method is promising to inhibit dental caries by reducing biofilm formation and protecting enamel hardness.


Assuntos
Catequina , Cárie Dentária , Biofilmes , Candida albicans , Catequina/farmacologia , Clorexidina/farmacologia , Cárie Dentária/prevenção & controle , Esmalte Dentário , Flavanonas , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Dureza , Humanos , Ácido Láctico/farmacologia , Polissacarídeos/farmacologia , Streptococcus mutans
8.
BMC Oral Health ; 22(1): 457, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309721

RESUMO

BACKGROUND: The present study aimed to develop a novel protein-repellent and antibacterial polymethyl methacrylate (PMMA) dental resin with 2-methacryloyloxyethyl phosphorylcholine (MPC) and quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM), and to investigate the effects of water-aging for 6 months on the mechanical properties, protein adsorption, and antibacterial activity of the dental resin. METHODS: Four groups were tested: PMMA control; PMMA + 3% MPC; PMMA + 1.5% DMAHDM; and PMMA + 3% MPC + 1.5% DMADDM in acrylic resin powder. Specimens were water-aged for 1 d, 3 months, and 6 months at 37 ℃. Their mechanical properties were then measured using a three-point flexure test. Protein adsorption was measured using a micro bicinchoninic acid (BCA) method. A human saliva microcosm model was used to inoculate bacteria on water-aged specimens and to investigate the live/dead staining, metabolic activity of biofilms, and colony-forming units (CFUs). RESULTS: The flexural strength and elastic modulus showed a significant loss after 6 months of water-ageing for the PMMA control (mean ± SD; n = 10); in contrast, the new protein repellent and antibacterial PMMA resin showed no strength loss. The PMMA-MPC-DMAHDM-containing resin imparted a strong antibacterial effect by greatly reducing biofilm viability and metabolic activity. The biofilm CFU count was reduced by about two orders of magnitude (p < 0.05) compared with that of the PMMA resin control. The protein adsorption was 20% that of a commercial composite (p < 0.05). Furthermore, the PMMA-MPC-DMAHDM-containing resin exhibited a long-term antibacterial performance, with no significant difference between 1 d, 3 months and 6 months (p > 0.05). CONCLUSIONS: The flexural strength and elastic modulus of the PMMA-MPC-DMAHDM-containing resin were superior to those of the PMMA control after 6 months of water-ageing. The novel PMMA resin incorporating MPC and DMAHDM exhibited potent and lasting protein-repellent and antibacterial properties.


Assuntos
Polimetil Metacrilato , Água , Humanos , Antibacterianos/farmacologia , Biofilmes , Metacrilatos/farmacologia , Metilaminas/farmacologia , Polimetil Metacrilato/farmacologia , Proteínas , Água/farmacologia , Fatores de Tempo
9.
Clin Oral Investig ; 25(9): 5375-5390, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33891172

RESUMO

OBJECTIVES: Dental caries is closely associated with acid-producing bacteria, and Streptococcus mutans is one of the primary etiological agents. Bacterial accumulation and dental demineralization lead to destruction of bonding interface, thus limiting the longevity of composite. The present study investigated remineralization effectiveness of adhesive containing nanoparticles of amorphous calcium phosphate (NACP) in a stimulated oral biofilm environment. METHODS: The enamel blocks were immersed in demineralization solution for 72 h to imitate artificial initial carious lesion and then subjected to a Streptococcus mutans biofilm for 24 h. All the samples then underwent 4-h demineralization in brain heart infusion broth with sucrose (BHIS) and 20-h remineralization in artificial saliva (AS) for 7 days. The daily pH of BHIS after 4-h incubation, lactic acid production, colony-forming unit (CFU) count, and content of calcium (Ca) and phosphate (P) in biofilm were evaluated. Meanwhile, the remineralization effectiveness of enamel was analyzed by X-ray diffraction (XRD), surface microhardness testing, transverse microradiography (TMR) and scanning electron microscopy (SEM). RESULTS: The NACP adhesive released abundant Ca and P, achieved acid neutralization, reduced lactic acid production, and lowered CFU count (P < 0.05). Enamel treated with NACP adhesive demonstrated the best remineralization effectiveness with remineralization value of 52.29 ± 4.79% according to TMR. Better microhardness recovery of cross sections and ample mineral deposits were also observed in NACP group. CONCLUSIONS: The NACP adhesive exhibited good performance in remineralizing initial enamel lesion with cariogenic biofilm. SIGNIFICANCE: The NACP adhesive is promising to be applied for the protection of bonding interface, prevention of secondary caries, and longevity prolonging of the restoration.


Assuntos
Cárie Dentária , Nanopartículas , Antibacterianos , Biofilmes , Fosfatos de Cálcio , Cárie Dentária/tratamento farmacológico , Suscetibilidade à Cárie Dentária , Cimentos Dentários , Humanos , Metacrilatos , Remineralização Dentária
10.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830243

RESUMO

(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6-9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2-3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14-21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.


Assuntos
Fosfatos de Cálcio/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Actinas/genética , Actinas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Cimentos Ósseos/farmacologia , Osso e Ossos/irrigação sanguínea , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Alicerces Teciduais , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
11.
Appl Microbiol Biotechnol ; 104(8): 3585-3595, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125481

RESUMO

The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points • DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions. • The pH values and pH-regulated genes can affect the zeta potential of fungal cells. • Zeta potential of fungal cells directly affect the binding between DMADDM and cells. Graphical abstract Schematic diagram of the antifungal activities of DMADDM at different pH values.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Metacrilatos/uso terapêutico , Orofaringe/microbiologia , Compostos de Amônio Quaternário/uso terapêutico , Animais , Biofilmes/efeitos dos fármacos , Materiais Dentários , Modelos Animais de Doenças , Feminino , Concentração de Íons de Hidrogênio , Metacrilatos/síntese química , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Amônio Quaternário/síntese química
12.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076241

RESUMO

Caries-related biofilms and associated complications are significant threats in dentistry, especially when biofilms grow over dental restorations. The inhibition of cariogenic biofilm associated with the onset of carious lesions is crucial for preventing disease recurrence after treatment. This in vitro study defined optimized parameters for using a photosensitizer, toluidine blue O (TBO), activated via a red light-emitting diode (LED)-based wireless device to control the growth of cariogenic biofilms. The effect of TBO concentrations (50, 100, 150, and 200 µg/mL) exposed to light or incubated in the dark was investigated in successive cytotoxicity assays. Then, a mature Streptococcus mutans biofilm model under sucrose challenge was treated with different TBO concentrations (50, 100, and 150 µg/mL), different light energy doses (36, 108, and 180 J/cm2), and different incubation times before irradiation (1, 3, and 5 min). The untreated biofilm, irradiation with no TBO, and TBO incubation with no activation represented the controls. After treatments, biofilms were analyzed via S. mutans colony-forming units (CFUs) and live/dead assay. The percentage of cell viability was within the normal range compared to the control when 50 and 100 µg/mL of TBO were used. Increasing the TBO concentration and energy dose was associated with biofilm inhibition (p < 0.001), while increasing incubation time did not contribute to bacterial elimination (p > 0.05). Irradiating the S. mutans biofilm via 100 µg/mL of TBO and ≈180 J/cm2 energy dose resulted in ≈3-log reduction and a higher amount of dead/compromised S. mutans colonies in live/dead assay compared to the control (p < 0.001). The light energy dose and TBO concentration optimized the bacterial elimination of S. mutans biofilms. These results provide a perspective on the determining parameters for highly effective photo-killing of caries-related biofilms and display the limitations imposed by the toxicity of the antibacterial photodynamic therapy's chemical components. Future studies should support investigations on new approaches to improve or overcome the constraints of opportunities offered by photodynamic inactivation of caries-related biofilms.


Assuntos
Biofilmes/efeitos da radiação , Lâmpadas de Polimerização Dentária , Cárie Dentária/terapia , Streptococcus mutans/efeitos da radiação , Animais , Contagem de Colônia Microbiana , Cárie Dentária/microbiologia , Relação Dose-Resposta à Radiação , Camundongos , Fármacos Fotossensibilizantes/efeitos adversos , Células RAW 264.7 , Streptococcus mutans/patogenicidade , Streptococcus mutans/fisiologia , Cloreto de Tolônio/efeitos adversos
13.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887330

RESUMO

Secondary caries often occurs at the tooth-composite margins. This study developed a novel bioactive composite containing DMAHDM (dimethylaminohexadecyl methacrylate) and NACP (nanoparticles of amorphous calcium phosphate), inhibiting caries at the enamel restoration margins in an in vitro saliva-derived biofilm secondary caries model for the first time. Four composites were tested: (1) Heliomolar nanocomposite, (2) 0% DMAHDM + 0% NACP, (3) 3% DMAHDM + 0% NACP, (D) 3% DMAHDM + 30% NACP. Saliva-derived biofilms were tested for antibacterial effects of the composites. Bovine enamel restorations were cultured with biofilms, Ca and P ion release of nanocomposite and enamel hardness at the enamel restoration margins was measured. Incorporation of DMAHDM and NACP into composite did not affect the mechanical properties (p > 0.05). The biofilms' CFU (colony-forming units) were reduced by 2 logs via DMAHDM (p < 0.05). Ca and P ion release of the nanocomposite was increased at cariogenic low pH. Enamel hardness at the margins for DMAHDM group was 25% higher than control (p < 0.05). With DMAHDM + NACP, the enamel hardness was the greatest and about 50% higher than control (p < 0.05). Therefore, the novel composite containing DMAHDM and NACP was strongly antibacterial and inhibited enamel demineralization, resulting in enamel hardness at the margins under biofilms that approached the hardness of healthy enamel.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Cárie Dentária/prevenção & controle , Esmalte Dentário/efeitos dos fármacos , Nanocompostos/química , Saliva/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Bovinos , Cárie Dentária/microbiologia , Cárie Dentária/patologia , Esmalte Dentário/microbiologia , Esmalte Dentário/patologia , Modelos Animais de Doenças , Dureza , Técnicas In Vitro
14.
Nanomedicine ; 21: 102069, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351236

RESUMO

The objectives of this study were to incorporate iron oxide nanoparticles (IONPs) into calcium phosphate cement (CPC) to enhance bone engineering, and to investigate the effects of IONPs as a liquid or powder on stem cells using IONP-CPC scaffold for the first time. IONP-CPCs were prepared by adding 1% IONPs as liquid or powder. Human dental pulp stem cells (hDPSCs) were seeded. Subcutaneous implantation in mice was investigated. IONP-CPCs had better cell spreading, and greater ALP activity and bone mineral synthesis, than CPC control. Subcutaneous implantation for 6 weeks showed good biocompatibility for all groups. In conclusion, incorporating IONPs in liquid or powder form both substantially enhanced hDPSCs on IONP-CPC scaffold and exhibited excellent biocompatibility. IONP incorporation as a liquid was better than IONP powder in promoting osteogenic differentiation of hDPSCs. Incorporating IONPs and chitosan lactate together in CPC enhanced osteogenesis of hDPSCs more than using either alone.


Assuntos
Fosfatos de Cálcio , Células Imobilizadas , Polpa Dentária/metabolismo , Compostos Férricos , Nanopartículas/química , Osteogênese , Transplante de Células-Tronco , Células-Tronco/metabolismo , Alicerces Teciduais/química , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Polpa Dentária/citologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Xenoenxertos , Humanos , Masculino , Camundongos , Células-Tronco/citologia
15.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315225

RESUMO

Cariogenic oral biofilms are strongly linked to dental caries around dental sealants. Quaternary ammonium monomers copolymerized with dental resin systems have been increasingly explored for modulation of biofilm growth. Here, we investigated the effect of dimethylaminohexadecyl methacrylate (DMAHDM) on the cariogenic pathogenicity of Streptococcus mutans (S. mutans) biofilms. DMAHDM at 5 mass% was incorporated into a parental formulation containing 20 mass% nanoparticles of amorphous calcium phosphate (NACP). S. mutans biofilms were grown on the formulations, and biofilm inhibition and virulence properties were assessed. The tolerances to acid stress and hydrogen peroxide stress were also evaluated. Our findings suggest that incorporating 5% DMAHDM into 20% NACP-containing sealants (1) imparts a detrimental biological effect on S. mutans by reducing colony-forming unit counts, metabolic activity and exopolysaccharide synthesis; and (2) reduces overall acid production and tolerance to oxygen stress, two major virulence factors of this microorganism. These results provide a perspective on the value of integrating bioactive restorative materials with traditional caries management approaches in clinical practice. Contact-killing strategies via dental materials aiming to prevent or at least reduce high numbers of cariogenic bacteria may be a promising approach to decrease caries in patients at high risk.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Cimentos Dentários/química , Metacrilatos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Ácidos/farmacologia , Antibacterianos/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Peróxido de Hidrogênio/farmacologia , Metacrilatos/química , Streptococcus mutans/patogenicidade , Streptococcus mutans/fisiologia
16.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641958

RESUMO

Periodontitis is a common infectious disease characterized by loss of tooth-supporting structures, which eventually leads to tooth loss. The heavy burden of periodontal disease and its negative consequence on the patient's quality of life indicate a strong need for developing effective therapies. According to the World Health Organization, 10⁻15% of the global population suffers from severe periodontitis. Advances in understanding the etiology, epidemiology and microbiology of periodontal pocket flora have called for antibacterial therapeutic strategies for periodontitis treatment. Currently, antimicrobial strategies combining with polymer science have attracted tremendous interest in the last decade. This review focuses on the state of the art of antibacterial polymer application against periodontal pathogens and biofilms. The first part focuses on the different polymeric materials serving as antibacterial agents, drug carriers and periodontal barrier membranes to inhibit periodontal pathogens. The second part reviews cutting-edge research on the synthesis and evaluation of a new generation of bioactive dental polymers for Class-V restorations with therapeutic effects. They possess antibacterial, acid-reduction, protein-repellent, and remineralization capabilities. In addition, the antibacterial photodynamic therapy with polymeric materials against periodontal pathogens and biofilms is also briefly described in the third part. These novel bioactive and therapeutic polymeric materials and treatment methods have great potential to inhibit periodontitis and protect tooth structures.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Periodontite/terapia , Polímeros/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Dentários/síntese química , Materiais Dentários/química , Sistemas de Liberação de Medicamentos , Humanos , Periodontite/microbiologia , Fotoquimioterapia , Polímeros/química , Polímeros/farmacologia , Qualidade de Vida
17.
Cytotherapy ; 20(5): 650-659, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555409

RESUMO

BACKGROUND: Compelling evidence indicates that metformin, a low-cost and safe orally administered biguanide prescribed to millions of type 2 diabetics worldwide, induces the osteoblastic differentiation of mesenchymal stromal cells (MSCs) through the 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway. As a highly hydrophilic cationic compound, metformin uptake is facilitated by cell membrane organic cation transporters (OCTs) of the solute carrier 22A gene family. We hypothesized that to effectively enhance osteogenic differentiation, and ultimately bone regeneration, metformin must gain access into functional OCT-expressing MSCs. METHODS: Data was obtained through immunoblotting, cellular uptake, mineralization and gene expression assays. RESULTS: We demonstrate for the first time that functional OCTs are expressed in human-derived MSCs from umbilical cord Wharton's jelly, an inexhaustible source of nonembryonic MSCs with proven osteogenic potential. A clinically relevant concentration of metformin led to AMPK activation, enhanced mineralized nodule formation and increased expression of the osteogenic transcription factor Runt-related transcription factor 2 (RUNX2). Indeed, targeting OCT function through pharmacological and genetic approaches markedly blunted these responses. CONCLUSIONS: Our findings indicate that functional OCT expression in UC-MSCs is a biological prerequisite that facilitates the intracellular uptake of metformin to induce an osteogenic effect. Future pre-clinical studies are warranted to investigate whether the expression of functional OCTs may serve as a potential biomarker to predict osteogenic responses to metformin.


Assuntos
Células-Tronco Mesenquimais/citologia , Metformina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Osteogênese , Cordão Umbilical/citologia , Adenilato Quinase/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Caries Res ; 52(1-2): 14-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29232675

RESUMO

We investigated the anticaries properties of an adhesive containing dimethylaminododecyl methacrylate (DMADDM) in vivo via a secondary caries animal model. Cavities were prepared in the maxillary first molars of Wistar rats. DMADDM-containing adhesives were applied on one side and commercial adhesives on the opposite side as a control. After a 3-week feeding period to induce secondary caries, the molars were harvested for the evaluation of the secondary caries. Lesion depth (LD) and mineral loss (ML) were measured via a micro-CT method, and a modified Keyes scoring method yielded scores for the caries lesions. Statistical analysis was divided into 2 parts: a correlation analysis between 2 evaluations with one-way ANOVA and a least-significant differences (LSD) test, and an evaluation of anticaries adhesives with a paired samples t test. The results showed that: (1) secondary caries was successfully produced in rats; (2) there was a correlation between the modified Keyes scoring method and micro-CT in the evaluation of the secondary caries; (3) the adhesive containing DMADDM significantly reduced both LD and ML (according to micro-CT), and also lowered the scores (based on the modified Keyes scoring method). This suggests that the novel DMADDM adhesive could perform an anticaries function in vivo via the secondary caries animal model which was also developed and testified in research. Secondary caries is one of the major reasons leading to the failure of caries restoration treatment. As a solution, anticaries adhesives perform well in biofilm inhibition in vitro. However, the lack of secondary caries animal models limits the evaluation of anticaries adhesives in vivo.


Assuntos
Cariostáticos/uso terapêutico , Cárie Dentária/prevenção & controle , Cimentos Dentários/uso terapêutico , Metacrilatos/uso terapêutico , Compostos de Amônio Quaternário/uso terapêutico , Animais , Cárie Dentária/diagnóstico por imagem , Modelos Animais de Doenças , Masculino , Metacrilatos/administração & dosagem , Compostos de Amônio Quaternário/administração & dosagem , Ratos , Ratos Wistar , Microtomografia por Raio-X
19.
Nanomedicine ; 14(1): 35-45, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887211

RESUMO

In this study, a novel calcium phosphate cement containing gold nanoparticles (GNP-CPC) was developed. Its osteogenic induction ability on human dental pulp stem cells (hDPSCs) was investigated for the first time. The incorporation of GNPs improved hDPSCs behavior on CPC, including better cell adhesion (about 2-fold increase in cell spreading) and proliferation, and enhanced osteogenic differentiation (about 2-3-fold increase at 14 days). GNPs endow CPC with micro-nano-structure, thus improving surface properties for cell adhesion and subsequent behaviors. In addition, GNPs released from GNP-CPC were internalized by hDPSCs, as verified by transmission electron microscopy (TEM), thus enhancing cell functions. The culture media containing GNPs enhanced the cellular activities of hDPSCs. This result was consistent with and supported the osteogenic induction results of GNP-CPC. In conclusion, GNP-CPC significantly enhanced the osteogenic functions of hDPSCs. GNPs are promising to modify CPC with nanotopography and work as bioactive additives thus enhance bone regeneration.


Assuntos
Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Polpa Dentária/citologia , Ouro/química , Nanopartículas Metálicas/administração & dosagem , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Cimentos Ósseos/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Humanos , Nanopartículas Metálicas/química , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Engenharia Tecidual/métodos
20.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400188

RESUMO

Cariogenic oral biofilms cause recurrent dental caries around composite restorations, resulting in unprosperous oral health and expensive restorative treatment. Quaternary ammonium monomers that can be copolymerized with dental resin systems have been explored for the modulation of dental plaque biofilm growth over dental composite surfaces. Here, for the first time, we investigated the effect of bis(2-methacryloyloxyethyl) dimethylammonium bromide (QADM) on human overlying mature oral biofilms grown intra-orally in human participants for 7⁻14 days. Seventeen volunteers wore palatal devices containing composite specimens containing 10% by mass of QADM or a control composite without QADM. After 7 and 14 days, the adherent biofilms were collected to determine bacterial counts via colony-forming unit (CFU) counts. Biofilm viability, chronological changes, and percentage coverage were also determined through live/dead staining. QADM composites caused a significant inhibition of Streptococcus mutans biofilm formation for up to seven days. No difference in the CFU values were found for the 14-day period. Our findings suggest that: (1) QADM composites were successful in inhibiting 1⁻3-day biofilms in the oral environment in vivo; (2) QADM significantly reduced the portion of the S. mutans group; and (3) stronger antibiofilm activity is required for the control of mature long-term cariogenic biofilms. Contact-killing strategies using dental materials aimed at preventing or at least reducing high numbers of cariogenic bacteria seem to be a promising approach in patients at high risk of the recurrence of dental caries around composites.


Assuntos
Biofilmes/efeitos dos fármacos , Brometos/farmacologia , Cárie Dentária/microbiologia , Materiais Dentários/farmacologia , Metacrilatos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Adulto , Biofilmes/crescimento & desenvolvimento , Brometos/química , Contagem de Colônia Microbiana , Materiais Dentários/química , Feminino , Humanos , Masculino , Metacrilatos/química , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Amônio Quaternário/química , Streptococcus mutans/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa